Задание № 1. Линейный парный регрессионный анализ
На основе данных, приведенных в Приложении 1 и соответствующих Вашему варианту (таблица 2), требуется:
1. Рассчитать коэффициент линейной парной корреляции и построить уравнение линейной парной регрессии одного признака от другого. Один из признаков, соответствующих Вашему варианту, будет играть роль факторного (х), другой – результативного (y). Причинно-следственные связи между признаками установить самим на основе экономического анализа. Пояснить смысл параметров уравнения.
2. Определить теоретический коэффициент детерминации и остаточную (необъясненную уравнением регрессии) дисперсию. Сделать вывод.
3. Оценить статистическую значимость уравнения регрессии в целом на пятипроцентном уровне с помощью F-критерия Фишера. Сделать вывод.
4. Выполнить прогноз ожидаемого значения признака-результата y при прогнозном значении признака-фактора х, составляющим 105% от среднего уровня х. Оценить точность прогноза, рассчитав ошибку прогноза и его доверительный интервал с вероятностью 0,95.
Задание № 2. Множественный регрессионный анализ
На основе данных, приведенных в Приложении и соответствующих Вашему варианту (таблица 2), требуется:
1. Построить уравнение множественной регрессии. При этом признак-результат и один из факторов остаются теми же, что и в первом задании. Выберите дополнительно еще один фактор из приложения 1 (границы наблюдения должны совпадать с границами наблюдения признака-результата, соответствующего Вашему варианту). При выборе фактора нужно руководствоваться его экономическим содержанием или другими подходами. Пояснить смысл параметров уравнения.
2. Рассчитать частные коэффициенты эластичности. Сделать вывод.
3. Определить стандартизованные коэффициенты регрессии (-коэффициенты). Сделать вывод.
4. Определить парные и частные коэффициенты корреляции, а также множественный коэффициент корреляции; сделать выводы.
5. Оценить значимость параметров уравнения регрессии с помощью t-критерия Стьюдента, а также значимость уравнения регрессии в целом с помощью общего F-критерия Фишера. Предложить окончательную модель (уравнение регрессии). Сделать выводы.
Задание № 3. Системы эконометрических уравнений
На основе данных, приведенных в таблице 3 и соответствующих Вашему варианту (таблица 4) провести идентификацию модели и описать процедуру оценивания параметров уравнений структурной формы модели.
Задание № 4. Временные ряды в эконометрических исследованиях.
На основе данных, приведенных в таблице 10 и соответствующих Вашему варианту (таблица 11), постройте модель временного ряда. Для этого требуется:
1. Построить коррелограмму и определить имеет ли ряд тенденцию и сезонные колебания.
2. Провести сглаживание ряда скользящей средней и рассчитать значения сезонной составляющей.
3. Построить уравнения тренда и сделать выводы.
4. На основе полученной модели сделать прогноз на следующие два квартала с учетом выявленной сезонности.
Задание № 1. Линейный парный регрессионный анализ
На основе данных, приведенных в Приложении 1 и соответствующих Вашему варианту (таблица 2), требуется:
1. Рассчитать коэффициент линейной парной корреляции и построить уравнение линейной парной регрессии одного признака от другого. Один из признаков, соответствующих Вашему варианту, будет играть роль факторного (х), другой – результативного (y). Причинно-следственные связи между признаками установить самим на основе экономического анализа. Пояснить смысл параметров уравнения.
2. Определить теоретический коэффициент детерминации и остаточную (необъясненную уравнением регрессии) дисперсию. Сделать вывод.
3. Оценить статистическую значимость уравнения регрессии в целом на пятипроцентном уровне с помощью F-критерия Фишера. Сделать вывод.
4. Выполнить прогноз ожидаемого значения признака-результата y при прогнозном значении признака-фактора х, составляющим 105% от среднего уровня х. Оценить точность прогноза, рассчитав ошибку прогноза и его доверительный интервал с вероятностью 0,95.
Задание № 2. Множественный регрессионный анализ
На основе данных, приведенных в Приложении и соответствующих Вашему варианту (таблица 2), требуется:
1. Построить уравнение множественной регрессии. При этом признак-результат и один из факторов остаются теми же, что и в первом задании. Выберите дополнительно еще один фактор из приложения 1 (границы наблюдения должны совпадать с границами наблюдения признака-результата, соответствующего Вашему варианту). При выборе фактора нужно руководствоваться его экономическим содержанием или другими подходами. Пояснить смысл параметров уравнения.
2. Рассчитать частные коэффициенты эластичности. Сделать вывод.
3. Определить стандартизованные коэффициенты регрессии (-коэффициенты). Сделать вывод.
4. Определить парные и частные коэффициенты корреляции, а также множественный коэффициент корреляции; сделать выводы.
5. Оценить значимость параметров уравнения регрессии с помощью t-критерия Стьюдента, а также значимость уравнения регрессии в целом с помощью общего F-критерия Фишера. Предложить окончательную модель (уравнение регрессии). Сделать выводы.
Задание № 3. Системы эконометрических уравнений
На основе данных, приведенных в таблице 3 и соответствующих Вашему варианту (таблица 4) провести идентификацию модели и описать процедуру оценивания параметров уравнений структурной формы модели.
Задание № 4. Временные ряды в эконометрических исследованиях.
На основе данных, приведенных в таблице 10 и соответствующих Вашему варианту (таблица 11), постройте модель временного ряда. Для этого требуется:
1. Построить коррелограмму и определить имеет ли ряд тенденцию и сезонные колебания.
2. Провести сглаживание ряда скользящей средней и рассчитать значения сезонной составляющей.
3. Построить уравнения тренда и сделать выводы.
4. На основе полученной модели сделать прогноз на следующие два квартала с учетом выявленной сезонности.
ие коэффициента детерминации R =0.58. Объем выборки n=20. Все предположения МНК считаются выполненными. Проверить гипотезу о значимости модели, используя критерий Фишера. Уровень значимости а =0.05. О
ные соотношения линейной алгебры:Необходимым условием экстремума функции является равенство нулю ее частных производных по всем параметрам . Вектор-столбец частных производных в матричном виде
ординатами (хi, уi), и принимая во внимание экономические соображения, по их расположению сформулируем предположение о связи Y и X.Визуальный анализ полученного графика показывает, что точки поля корр
Контрольная
2007
10
Всероссийская гоусдарственная налоговая академия (г.Москва)
зличие полученных результатов и сделайте вывод о тесноте связи между временными рядами.3. Постройте уравнение регрессии, включив в него фактор времени. Дайте интерпретацию параметров уравнения. Сделай