Астрофизика
| Категория реферата: Рефераты по астрономии
| Теги реферата: рассказы чехова, доклад на тему человек человек
| Добавил(а) на сайт: Sigachjov.
Предыдущая страница реферата | 2 3 4 5 6 7 8 9 10 11 12 | Следующая страница реферата
- разрешить первые галактические субструктуры, порядка отдельных скоплений звезд (размер 300 пк для 0,5(Z(5). Здесь требуется разрешение 0,060(( на длине волны 2 мм;
- выяснить основные спектральные свойства далеких галактик. Провести статистический анализ свойств галактик, с большим красным смешением на полях 4 x 4( (1 x 1 Мпк для 0,5(((();
- обнаружить и исследовать запыленные районы, где скрыты области активного звездообразования и активные галактические ядра, в том числе для эпохи мощного звездообразования при Z=2;
- обнаруживать отдельные объекты, излучающие в среднем и дальнейшем инфракрасных диапазонах фона и получать их спектры вплоть до 28 мм.
Телескоп сможет исследовать все стадии формирования звезд и планетных
систем от массивных оболочек вокруг протозвезд до пропланетных дисков
вокруг молодых звезд главной последовательности. Он сможет наблюдать
планеты типа Юпитера у всех одиночных звезд на расстояниях до 8 пк, получить первые прямые изображения и спектрограммы внесолнечных планет.
Многие технические решения №6ST и технологии (сверхлегкая активная
криогенная оптика, устройства для опознания формы и исправления волнового
фронта излучения, широкоформатные высокочувствительные инфракрасные
детекторы, сверхлегкие солнечные экраны) могут быть применены в науке и
промышленности уже в ближайшее время.
О создании крупного орбитального оптического телескопа
Давно уже мечтали астрономы. Одним из первых и наиболее активных
пропагандистов этой идеи стал в 40-50-х годах Л. Спицер из Принстонского
университета. Еще в 1946 году он подготовил доклад (тогда секретный) о
преимуществах космических наблюдений. В 1959, 1962 и 1965 годах на
совещаниях астрономов США, посвященных выработке программы космических
исследований, было рекомендовано начать работы по изучению проекта «Большой
космический телескоп», а осенью 1971 года НАСА организовало комитет по
разработке этого проекта, с которого и ведет свое начало программа
Космического телескопа им. Хаббла.
В 1973 году рабочая группа специалистов под руководством Ч. О(Делла
приступила к предварительной проработке основных вариантов конструкции
«Большого космического телескопа», завершившейся в 1977 году создание
рабочей группы Космического телескопа им. Хаббла. К этому времени телескоп
утратил наименование «большого», диаметр его главного зеркала был уменьшен
с 3 до 2,4 м. Дело в том, что разработчикам стали известны параметры МТКК –
транспортной системы для вывода телескопа на орбиту. В грузовом отсеке МТКК
можно разместить телескоп с диаметром зеркала до 3.2 м, но тогда массивные
блоки служебных систем спутника (т.е. систем ориентации, энергопитания, связи) пришлось бы расположить за главным зеркалом, и для такого спутника с
большим моментом инерции потребовалось разработать мощную и дорогую систему
ориентации.
В варианте с 2,4-метровым зеркалом служебные системы скомпонованы в
виде тора, окружающего главное зеркало, благодаря чему момент инерции
спутника сильно уменьшится. Теперь спутник официально называется
Космический телескоп им. Хаббла, в честь Э. Хаббла, открывшего расширение
Вселенной.
Ограничение на длину инструмента и потребность иметь большое поле зрения привели к выбору оптической системы Ричи-Кретьена, в которая широко применяется и в современных наземных рефракторах. Главное и вторичное зеркала соответственно имеют форму вогнутого и выпуклого гиперболоидов и находятся на расстоянии 4,9 м друг от друга (эквивалентное фокусное расстояние 58 м). К качеству изготовления оптики предъявлялись исключительно высокие требования: например, поверхность главного зеркала не должна отклонятся от расчетной более чем на 10 нм.
Оптические детали телескопа крепятся к ферме из графито-эпоксидного композиционного материала, способной сохранять их взаимное расположение с точностью до 1 мкм, несмотря на перепады температуры. Требования к механической прочности конструкции связаны с 3-4 кратными перегрузками, возможными при взлете и посадке МТКК, а отнюдь не с условиями работы телескопа на орбите. Общая масса спутника 10.4 т.
В отличии от наземных телескопов Космический телескоп им. Хаббла будет работать и при ярком солнечном свете. Поэтому передний конец трубы телескопа существенно удлинен за счет светозащитной бленды, внутри трубы имеется система диафрагм, покрытых «особо» черной краской, способной отражать менее 1% падающего света и не давать бликов. Несмотря на эти меры, по-настоящему «темное» небо телескоп сможет регистрировать только тогда, когда объект наблюдения находится на угловых расстояниях более 50( от Солнца, 70( от освещенной части Земли и 15( от Луны.
Система ориентации Космического телескопа им. Хаббла построена на
основе силовых гироскопов. Грубое наведение с точностью 1( будет
осуществляется с помощью звездных датчиков и гироскопов – датчиков скорости
(положение их осей время от времени должно уточнятся по звездам). Однако
расчетное качество изображения, получаемое с помощью 2,4-метрового
телескопа на длине волны 0,5 мкм, равно 0,05((, и чтобы использовать это
преимущество перед наземными инструментами, требуется обеспечивать
стабилизацию телескопа с еще более высокой точностью.
Направление оптической оси телескопа определяется тремя датчиками точного гидирования по изображениям звезд более ярких, чем 1,4m, в периферийной части поля зрения телескопа, разбитой соответственно на 3 сектора. По команде датчики начинают поиск гидировочных звезд, перемещаясь по спирали с центром в расчетном положении. Критериями правильности захвата нужных звезд служат значения их яркости и взаимное расположение. В случае неудачи поиск повторяется, затем переходят к поиску запасных звезд (если таковые имеются). Очевидно, выбор звезд должен производиться заранее, и это очень трудоемкая работа. Более того, точность координат существующих звездных каталогов, как правило, недостаточна, поэтому запуску Космического телескопа им. Хаббла должно было предшествовать фотографирование всего неба на наземных телескопах с большим полем зрения и составление специального каталога гидировочных звезд с точно известными положениями.
Датчики точного гидирования относятся к числу наиболее сложных систем телескопа и включают в себя прецизионные механические узлы, диссекторные телекамеры и даже интерфомометры. Небольшие смешения звезды в поле зрения соответствуют изменению разности фаз световых волн, приходящих на противоположные края зеркала телескопа: изменяются интенсивности интерферирующих пучков, и на выходе датчика возникает сигнал ошибки. При точности гидирования 0,007(( время реакции датчиков точного гидирования должно быть меньше 1 с, и не только потому, что возможны быстрые колебания самого спутника, но и поскольку все звезды смещаются в поле зрения из-за аберрации света вследствие движения спутника по орбите.
К тому же с помощью Космического телескопа им. Хаббла будут
наблюдаться и планеты, достаточно быстро перемещаться на фоне звезд.
Однако с данной системой наведения этот телескоп не сможет наблюдать земную
поверхность. Следует отметить, что неполадки при работе датчиков точного
гидирования до последнего момента заставляли сомневаться в их
работоспособности.
Как бы не был совершенен орбитальный телескоп, без светоприемной аппаратуры он «слеп». Выбор типа светоприемника для Космического телескопа им. Хаббла оказался не прост. Всерьез обсуждались возможность применения фотопленок, столь долго и успешно служивших астрономам на Земле. К сожалению, в условиях космоса высокочувствительные пленки постепенно темнеют из-за воздействия проникающей радиации, и поэтому их пришлось бы доставлять на Землю не реже одного раза в месяц. Однако частые посещения орбитального телескопа нежелательны как с экономической, так и с технической точки зрения. Отражающее покрытие зеркала (пленка алюминия и фтористого магния) очень чувствительно к газовой атмосфере, окружающей всякий крупный (а тем более маневрирующий) космический объект, поэтому плотная крышка будет открываться лишь после удаления МТКК и вновь закрываться с его приближением.
В 1973 году было решено использовать электронные приемники изображения, лучшим из которых считалась разрабатываемая в Принстонском университете Р. Даниельсоном и его сотрудниками передающая телевизионная трубка секон. Каково же было разочарование его создателей, когда в 1977 г. стало известно о резкой переориентации руководителей программы на твердотельные приемники. Это было смелое решение, ибо технология создания таких приемников насчитывала тогда всего несколько лет, и в астрономии они еще не использовались.
В настоящее время эти ПЗС-приборы – приборы с зарядовой связью – можно увидеть чуть ли не на каждом американском телескопе, и их преимущества хорошо известны: высокий квантовый выход, доходящий до 60%, большое количество чувствительных элементов, малый шум, большой рабочий диапазон изменения яркости объекта и высокая геометрическая стабильность.
Использование приведенного материала в учебном процессе.
1 Включение материала в темы занятий по физике, естествознанию
(рекомендации для учителя).
На весь курс астрономии в программе средней школы отводится мало времени. За это время ученики должны освоить астрономию, сферическую астрономию, астрофизику, космологию и космогонию. Целостный курс астрономии практически распадается на ряд ознакомительных разделов, теряя филосовско- мировозренческое значение.
Одним из выходов видится экономия времени за счет введения различных элементов астрономических знаний в курс других школьных дисциплин в качестве иллюстративного материала. Например, развитие представлений о строении Солнечной системы – в истории; определение географических координат астрономическими методами, основы измерения времени – в географию; законы Кеплера, источники энергии Солнца, определение радиальной составляющей скорости звезд на основе эффекта Доплера – в физику; определение пространственной скорости звезд – в физику и геометрию; определение расстояний до звезд и до тел Солнечной системы – в геометрию; химический состав планет и звезд – в химию и т.п.
Хотя эти элементы будут просто иллюстрировать законы, изучаемые в
данных дисциплинах, в курсе астрономии учитель уже сможет опираться на них.
Время, требуемое для активизации знаний, значительно меньше чем для
изучения.
Рекомендуем скачать другие рефераты по теме: диплом государственного образца, реферат язык.
Категории:
Предыдущая страница реферата | 2 3 4 5 6 7 8 9 10 11 12 | Следующая страница реферата