Тросовые системы в космосе
| Категория реферата: Рефераты по авиации и космонавтике
| Теги реферата: реферат на социальную тему, реферат сила
| Добавил(а) на сайт: Леонов.
Предыдущая страница реферата | 1 2 3
P1a(H)/p1в-2=m2/m4+m3/m4 (IV 16)
Масса научной аппаратуры остается неизменной, т. е. m2/m4 = const, поэтому, варьируя отношения p1a(Н)/р1в и m3/m4, можно выбирать необходимые
параметры, задавая другие. Однако следует отметить следующее
обстоятельство. При подъеме вверх выносного баллонета аэростата-носителя, переходящего при этой вариации на некоторую высоту Hср, газ в баллонете
будет расширяться до объема V2. Чтобы стенки не были напряженными, у
баллонета должен быть предусмотрен избыточный объем, т. е. V2> V1. При
постоянной массе газа m4 его объем при термодинамических параметрах высоты
Hср. составит:
V2 =m4/pср. Rв Tср. Следовательно, увеличение объема определяется
выражением
(v=v2-v1=m4Rв (IV. 17)
Это, в свою очередь, приведет к увеличению веса оболочки на величину (Gз.
Если массовая плотность материала оболочки постоянна и равна рк, то, представляя баллонет в виде кругового цилиндра, добавку веса
дополнительного объема можно определить как
(Gз=(dL(pкg (1 V. 18)
где L— высота дополнительного цилиндрического объема; ( — толщина материала
оболочки; d — диаметр цилиндра.
Поскольку для кругового цилиндра (v =(d^2/4L, выражение (IV. 18) можно
преобразовать к виду
(Gз=4(pк(vg/d. (IV. 19)
Таким образом, с учетом увеличения веса оболочки необходимо в уравнении
(IV. 16) массу оболочки записывать как сумму масс оболочки для положения
равновесия и величины m3=(Gз/g. Однако увеличение массы (соответственно
веса) оболочки приведет к необходимости уменьшения величины m2/m4 если
высоту нижнего равновесия оставим прежней. В противном случае для
определения параметров баллонета следует использовать методы
последовательного приближения.
Т а б л и ц а 5
|Показате|Высокомодульные |Стальн|Капрон|
|ль |волокна |ая | |
| | |провол| |
| | |ока | |
|Прочност|(2(З)*|3*10^9|3,2*10|(3,2(4|— |
|ь на |10^9 | |^9 |)*10^9| |
|разрыв, | | | | | |
|Па | | | | | |
|удлинени|2—4 |1—4 |1—3 |— |8—15 |
|е, % | | | | | |
|Модуль |(I0/15|(11/15|(6/7.5|(5/5.5|— |
|упругост|)* |)* |)*10^1|)*10^1| |
|и, Па |10^10 |10^10 |0 |0 | |
|Плотност|1300—1|1350 |2550 |7800 |1350 |
|ь, кг/м'|430 | | | | |
|Число |3000 |— |200—25|20 |8000— |
|двойных | | |0 | |12000 |
|изгибов,| | | | | |
|цикл | | | | | |
|Рабочая |523 |573 |773 |773 |393 |
|темпе-ра| | | | | |
|тура, К | | | | | |
Исходя из необходимости первоочередного исследования облачного покрова
планеты, выносной баллонет должен Опускаться до высоты (30(40)*10^3м. В
диапазоне высот (30(56)-10^3 м ветры имеют различную скорость, перепад
температур достигает 130 °С, плотность и вязкость среды также изменяются.
Все эти факторы приводят к тому, что выносной баллонет становится
своеобразным аэродинамическим тормозом, увеличивающим усилие, действующее
на трос. В случае, если на этих высотах будут развиваться турбулентности и
порывы ветра, у системы баллонет — носитель появится путевая раскачка.
Возможны и продольные (по высоте) колебания, увеличивающие нагрузку на
тросовую подвеску. Однако, как было показано выше, такие колебания в
довольно плотной атмосфере Венеры быстро затухают. Характеристики
прочностных свойств тросов из различных материалов приведены в табл. 5.
Видно, что наибольший интерес представляют высокомодульные волокна, которые
по всем параметрам могут обеспечить подвеску баллонета на длине троса
примерно 20*10^3 м.
Для определения предельной длины троса в системе носитель — баллонет
находим максимальное напряжение в сечении троса, когда отсутствуют рывки и
подъем груза вверх равномерный. Наиболее напряженным является сечение в
начале троса. Сила, действующая на трос, слагается из веса выносного
баллонета G1, веса сматываемого троса Gтр, подъемной силы баллонета F1, возрастающей при подъеме на величину инерционной силы Fин и силы
аэродинамического сопротивления FR.
Таким образом, при спуске действующая на трос сила описывается выражением
Fтр=G1+Gтр-F1. (IV.21)
где Gтр = ртрLтрSтр; F1=V1[p1a(H)–p1a]g(H), напряжение в этом случаеcxv^2
(= G1+Gтр-F1/Sтр (IV.22)
Здесь Sтр- поперечное сечение троса; ртр —плотность материала троса.
При подъеме с ускорением а инерционная сила Fин=а(m1+mтр);
аэродинамическое сопротивление FR=0,5Cx v ^2pa(H)S, где S — поверхность
выносного баллонета; v — скорость подъема.
Следовательно, в момент ускоренного подъема напряжение в наиболее опасном
сечении троса
(= G1+Gтр-F1+Fин+FR/Sтр (IV.23)
Предельную длину троса для квазистатического состояния подвески можно
определить из уравнения (IV.22)
Lтр=1/pтр*((-G1/Sтр+F1/ Sтр).
Для определения возможностей аэростата с выносным баллонетом произведём
численные оценки параметров системы. Допустим, что вес G1= 1000 H. Глубина
погружения (нижний уровень) H1=30*10^3 м, уровень дрейфа аэростата-носителя
Hср = 50*10^3 м. Определим параметры системы, если оболочка выносного
баллонета выполнена из пластика толщиной 40*10:-6 м, плотностью 2*10^3
кг/м^3; диаметр оболочки d = 1 м.
Параметры атмосферы Венеры: 1) для высоты Hср = 50х10^3 м температура Тcр =
350 К, давление рср=1,275 х10^5 Па, плотность рср а(H)=1,932 кг/м^3, рв=8,844х10^-2 кг/м^3; 2) для высоты H1 = 30*10^3 температура T1=492 К, давление p1 == 9,35*10^5 Па, плотность p1a(Н)=9,95 кг/м^3, р1в == 4,61*10^-
1 кг/м^3. Газовая постоянная водорода Rв == 4118,8 Дж/(кг*К). Ускорение
свободного падения g (Н) = 8,87 м/с^2.
Расчет параметров баллонета. Исходя из принятых данных, объем баллонета в равновесии V1 = F1/[p1a(Н)-p1в]g(Н) = 11,9 м^3; масса водорода в баллонете m4=V1p1в = 5,485 кг; дополнительный объем (v=m4Rв х (Tcp/pcp-T1/p1)=50,1 м^3; общий объем баллонета V2=V1+(v =62 м^3; масса m3=((d^2/2+4v1/d)(pк=3,9 кг; масса дополнительного объема (m3=4(pк(v/d=16,1 кг. Следовательно, (m3+ m3=20 кг.
Из уравнения (IV. 16) следует, что безразмерная масса научной аппаратуры
и гондолы не должна превышать величины
m2/m4=p1a(H)/ p1в-2-(m3+(m3)/m4
Практически во всем диапазоне высот в атмосфере Венеры отношения плотностей
атмосферы и водорода p1a (H)/ p1в =21,5 с точностью до десятых.
Следовательно, m2/m4=19,5-((m3+ m3)/m4 откуда m2/m4=15,9; масса научной
аппаратуры m2=15,9 m4=87 кг. Таким образом, общая масса выносного баллонета
m1=m2+m3+m4(112,5 кг.
Начальное условие G1 == 1000 Н дает массу m1G1/g (Н)=112,7 кг, расхождение с вычисленной составляет 0,2 кг (1,77 Н), или 0,2% заданного
значения силы F1.
Расчет параметров аэростата-носителя. Для численных оценок принимаем:
начальная масса собственно аэростата-носителя m0=100 кг; общая масса
системы m0+m1=212,7кг (или вес системы G0+G1=1887 Н). Следовательно, объем
оболочки на Hср=50-10^3 м составляет: V0=Fср/[pа(Н)-pв]срg(Н)=115,4 м^3.
Если объем сферический, то его радиус rs(3м. Массовая плотность собственно
аэростата-носителя ран=m0/v0=0,866 кг/м^3.
Скачали данный реферат: Buryj, Glen, Karl, Дионисий, Stalin, Олег.
Последние просмотренные рефераты на тему: конспекты бесплатно, решебник по математике класс виленкин, доклад по обществознанию, реферат сфера.
Категории:
Предыдущая страница реферата | 1 2 3