Разрушения зданий при аварийных взрывах бытового газа
| Категория реферата: Рефераты по безопасности жизнедеятельности
| Теги реферата: тесты онлайн, курсовые работы
| Добавил(а) на сайт: Lavrentij.
Предыдущая страница реферата | 1 2 3 4 | Следующая страница реферата
Рис.5. Фотография взрыва пропановоздушной смеси в смежных камерах.
На динамические характеристики внутреннего дефлаграционного взрыва большое влияние оказывает турбулизация свежей смеси, приводящая к увеличению нормальной скорости горения и резкому увеличению видимой скорости пламени. Интенсификация процесса горения при расчетах обычно учитывается введением коэффициента интенсификации .
Интенсификация процесса горения при взаимодействии пламени с различного рода препятствиями иллюстрирует (рис.6).
Рис.6. Влияние препятствий, расположенных на пути пламени, на взрывные нагрузки.
Происходит резкое увеличение притока продуктов взрыва, т.к. увеличивается не только общая площадь горения, но и происходит существенная турбулизация смеси в следе за телом. Следствием значительного увеличения притока продуктов взрыва является рост взрывного давления.
Рассмотрим математические модели и уравнения, описывающие избыточное давление при внутренних дефлаграционных взрывах
При математическом описании процесса взрывного горения в промышленных и гражданских зданиях необходимо исходить из того, что допустимые уровни взрывных нагрузок внутри зданий не должны превышать Pдоп=10-15кПа. При давлениях, больших Pдоп, основные строительные конструкции большинства зданий разрушаются.
Невысокие уровни избыточного давления позволяют внести в математическую модель ряд упрощений. Во-первых, можно считать, что скорость нормального горения, степень расширения продуктов сгорания и плотность свежей смеси являются величинами постоянными. Во-вторых, использовать принцип квазистатичности избыточного давления, когда давление является функцией только координат и не зависит от времени, т.е. время выравнивания давления существенно превышает время изменения параметров системы.
Динамика изменения давления (нагрузок) в этом случае может быть описана соотношением:
(1)
P(t) - текущее значение давления; P - избыточное давление; S(t) - текущее значение площади поверхности фронта пламени; S пр - суммарная площадь сбросных проемов; i - плотность холодной газовоздушной смеси (1) или продуктов сгорания (2); - степень расширения смеси при сгорании, =1/2; i - показатель адиабаты свежей смеси (1) или продуктов взрыва (2); Uн – нормальная скорость распространения пламени; Vj - текущий объем свежей смеси (V1) или продуктов взрыва (V2); f(t,P) - функциональная зависимость вскрытия предохранительных конструкций (стекол в оконных проемах, ЛСК и т.д.); - коэффициент интенсификации процесса горения; - коэффициент расхода, истекающих через сбросной проем газов.
Из (1) следует, что параметры, от которых зависит темп нарастания давления (кроме параметров, характеризующих горючую смесь Uн и ) являются: площадь фронта пламени, объем помещения, плотность истекающих через сбросные проемы газов и площадь сбросных проемов.
Из формулы (1) в предположении, что все продукты сгорания мгновенно сбрасываются в атмосферу и при условии, что на сбросных проемах отсутствуют предохранительные конструкции, следует упрощенное соотношение для определения текущего значения давления:
(2)
где S(t) - текущее значение площади поверхности фронта пламени.
Количественное определение влияния параметров предохранительных конструкций (ПК) на уровни взрывных нагрузок проводится по различным методикам в зависимости от того, используется в качестве ПК «глухое» остекление или легкосбрасываемые конструкции (ЛСК).
Для определения f(t,P) в помещениях, оборудованных ЛСК, необходимо знать функциональную зависимость смещения ЛСК от времени - x(t). Для ее определения уравнение (1) дополняется системой из двух обыкновенных дифференциальных уравнений:
(3)
где V(t) - скорость перемещения ЛСК; - параметр, характеризующий инерционность легкосбрасываемых конструкций; К – параметр, характеризующий место расположения ЛСК (К=1 – при расположении ЛСК на крыше здания, К=0 – при расположении ЛСК в стенах здания); g - ускорение свободного падения; m - масса единичной легкосбрасываемой конструкции.
Для подтверждения корректности описанной вычислительной схемы было проведено сравнение результатов расчета с экспериментальными данными (рис.7). Полученное удовлетворительное согласие между результатами расчета и эксперимента позволяет говорить о применимости расчетной схемы для прогнозирования взрывных нагрузок на объектах, где в качестве предохранительных конструкций используются ЛСК.
Рис.7. Сравнение экспериментальных и расчетных осциллограмм давления при взрыве пропановоздушной смеси в кубической камере (h = 305мм).
Рекомендуем скачать другие рефераты по теме: оформление реферата, курсовая работа по менеджменту.
Категории:
Предыдущая страница реферата | 1 2 3 4 | Следующая страница реферата