Информационное управление клеточными процессами
| Категория реферата: Биология и химия
| Теги реферата: класс, реферат современная россия
| Добавил(а) на сайт: Gorbunov.
Предыдущая страница реферата | 1 2 3 4 5 6 | Следующая страница реферата
Однако заметим, что вся эта многосложность всегда сводится к относительно простым закономерностям молекулярной биохимической логики и информатики и простым принципам и правилам использования элементной базы! Сначала отметим, что принципы действия управляющей системы клетки относительно просты, хотя при этом могут быть задействованы сложные молекулярные программно-аппаратные устройства. К примеру, при организации процессов репликации, транскрипции или трансляции генетической информации, управляющая система клетки манипулирует целостными элементами – нуклеотидами или аминокислотами, которые играют роль химических букв биологической информации. При построении полисахаридов или липидов она манипулирует уже другими элементами – простыми сахарами и жирными кислотами, которые вполне можно назвать символами молекулярной информации. Кроме того, в ступенчатых химических реакциях различные ферменты способны манипулировать и отдельными химическими знаками этих элементов, то есть их составными частями. Эта способность управляющей системы основана на том, что все типовые биохимические элементы, а значит и биомолекулы клетки, обладают различными типовыми функциональными и боковыми группами, атомами и их химическими связями, которые свободно узнаются и тестируются соответствующими ферментами. Боковые и функциональные атомные группы, атомы и их химические связи – это и есть те опознавательные знаки, благодаря которым управляющая система легко может идентифицировать любой биологический элемент клетки!
Таким образом, общий принцип действия информационной молекулярно-биологической системы управления живой клетки (так же как и в компьютере) сводится к упорядоченному манипулированию различными буквами, символами и знаками, которым предписан определённый информационный смысл. Сам же механизм действия системы основан на том, что все операции, связанные с организацией управляющего процесса, производятся над единицами биологической информации – химическими буквами и символами.
А операции, связанные с управляемыми процессами, в основном, производятся над составными частями молекул субстрата – химическими знаками их элементов. Это подтверждает то предположение, что все химические и биологические процессы в живых молекулярных системах управляются только информационным путём, а источником управляющей информации является генетическая память. Данный момент трудно переоценить, так как он является ключевым для молекулярной биохимической логики и информатики. При управлении ступенчатыми реакциями, все биохимические процессы (катаболизма или анаболизма) любой сложности также разбиваются на определенную последовательность типовых химических реакций. Заметим, что простота типовых (элементарных) операций управления достигается и обеспечивается применением типовых информационных молекулярных кодов, сформированных в активных центрах соответствующих ферментов. Эти коды эквивалентно соответствуют тем типовым химическим буквам, символам или знакам, с которыми в данный момент работают ферменты!
Таким образом, управляющая система клетки работает с биомолекулами так, что воспринимает их и как химические, и как информационные компоненты субстратов! [4]. Поэтому, автор статьи считает, что все живые клетки информационно работают только с молекулярными кодами (в том числе и генетическими). Это могут быть коды генетических программ, линейные или стереохимические коды биологических макромолекул, коды отдельных букв, символов или химических знаков. Эффективность применения в живых системах молекулярных кодов обеспечивается многократным циклическим их повторением в структурах типовых биомолекул.
Поэтому, обобщенно, все сообщения и сведения, записанные в структурах биологических молекул, с которыми работает управляющая система клетки, следует считать молекулярной информацией! [5]. Бесконечная череда длинных дискретных сообщений (в виде иРНК, полипептидных цепей, белковых и других биомолекул), по своей сути, представляет собой, ничто иное, как те управляющие информационные потоки и сети, которые осуществляют циклическую передачу информации с целью организации процессов управления, регулирования и контроля химических превращений и реализации различных молекулярных био-логических функций. Соответствие молекулярных кодов в живых системах строится по принципу их структурной (стерической) и химической комплементарности, то есть на основе взаимодополняемости их связей, структур и функций.
Важно подчеркнуть, что именно такое матрично-кодовое соответствие является базовой основой информационных передач и взаимодействий в живых молекулярных системах [3]. В силу этих обстоятельств, при управлении клеточными процессами решаемая задача всегда разбивается не только на ряд простых, последовательно выполняемых элементарных шагов, но и на множество параллельных шагов, которые практически выполняются одновременно. Примером параллельного решения задач управления может служить параллельная работа многочисленных биопроцессорных единиц (рибосом) аппарата трансляции. Важной особенностью клеточных процессов является также их специализированное распределение по различным отсекам и компартментам. То есть для различных по своему характеру химических реакций существуют различные операционные блоки. Для доставки биологических молекул, а, следовательно, и молекулярной информации, в живой клетке имеются обширные сети коммуникационных (транспортных) систем.
Таким образом, общий подход к решению биологических задач в клетке в определенной мере напоминает не только работу, но и структурную организацию технических мультипроцессорных систем управления. Этот факт лишний раз напоминает нам об информационной сущности биологической формы движения материи. Живая клетка является той системой, посредством которой осуществляется поступательное движение, непрерывность и вечность жизни. Эти процессы, как известно, обеспечиваются наследственной информацией. Несмотря на многочисленные внешние различия, клетки разных типов обладают поразительным сходством. К примеру, все клетки пользуются одним и тем же молекулярным алфавитом и типовой структурной организацией управляющих и управляемых систем. Кроме того, в любых клетках все информационные массивы ДНК подчинены одной и той же цели – формированию структурной, информационной и функциональной организации живой системы, её развитию и воспроизведению.
В структурах живой клетки мы не найдем привычной начинки информационных технических систем с четким разделением материальных и программных средств. В клетках функционируют только те программируемые биологические макромолекулы, структуры и компоненты, которые после “биосинтеза” сами по себе становятся материально-энергетическими и программно-аппаратными средствами управления. Все они встраиваются в общую управляющую систему для выполнения тех или иных биологических функций и информационных операций! Благодаря этому, биомолекулы и структуры клетки всё время находятся в процессе постоянного и непрерывного движения, обновления, расщепления и информационного взаимодействия друг с другом, который и называется жизнью. Отсюда, как следствие, вытекает и тот факт, что все клеточные процессы управляются, регулируются и взаимно координируются той программной информацией, которая в данное время загружена в аппаратную систему клетки, то есть, перенесена и находится в функциональных биомолекулах и структурах клетки!
Таким образом, клеточная система управления и её выходное управляющее звено (ферменты, белки и другие функциональные биомолекулы), руководствуясь загруженной в их структуры программной информацией, осуществляют “автоматизированное” управление всеми метаболическими путями и клеточными процессами. Причем, если биохимики относятся к ним как к процессам чисто химическим, то управляющая система клетки их явно воспринимает как процессы информационные. В связи с этим, очевидно, что главной задачей программных средств, применяемых в живых клетках, является обеспечение оперативного взаимодействия выходного звена управления (ферментов, белков и т. д.) с различного рода объектами управления (субстратами). Любопытно, что для рассмотрения клеточного метаболизма существуют подробные карты метаболических путей.
К сожалению, в этих картах, как правило, среди множества биохимических деталей, трудно понять природу и принципы организации химических превращений. Кроме того, здесь практически не отражена ключевая роль информационных управляющих процессов. Известно, что в технике, для объяснения общих принципов работы информационных систем управления, применяются свои специфические понятия и термины, структурные или функциональные схемы. Информационные процессы в клетке и в технических системах имеют общее назначение и во многом сходны. Так как живая клетка является сложной информационной системой, то для рассмотрения общих принципов её организации, так же как и для объяснения причин её функционирования, можно составить и применить такого рода структурную схему. Однако даже самая упрощенная схема самой простой клетки указывает на крайне высокую сложность её структурной и функциональной организации. Систематизируя отдельные информационные фрагменты и известные факты, в чем-то их переосмысливая, автор статьи сконструировал подобную схему и назвал её: “Информационное управление клеточными процессами. Структурная схема”. (Прилагается в конце статьи, с. 27).
Структурная схема информационных процессов и сопряженных с ними процессов биохимических должна облегчить понимание биологической сущности живого состояния и показать важнейшие условия, необходимые для поддержания жизнедеятельности любых клеток. А приведенный материал в данной работе должен помочь понять информационную основу биологических процессов. Предлагаемая схема удобна тем, что в ней четко просматриваются важнейшие информационные принципы организации живой клетки, указаны направления потоков управляющей и сигнальной (осведомляющей) информации. Такого рода схема показывает, что управляющую систему и метаболизм живой клетки можно наглядно представить в виде нескольких отдельных операционных (функциональных) блоков.
5. О структурной схеме.
Живая клетка является элементарной самоуправляемой биологической единицей. Она относится к информационной управляющей и открытой биохимической системе, извлекающей свободную энергию и сырьевые ресурсы из окружающей среды. Основой её организации является информационная молекулярно-биологическая система управления. Управляющая система клетки содержит все необходимые узлы, устройства и компоненты, которые служат для хранения, передачи, переработки и использования генетической информации в различных биологических процессах (см. структурную схему).
Процесс управления в сложных технических устройствах и в живой клетке, в определённой мере, выполняет одни и те же задачи, хотя есть и существенные различия в информационных субстратах и в организации самих информационных процессов. Кроме того, если информация в технических устройствах есть функция аппаратной системы, то в живых клетках чаще всего наоборот, – информационные сообщения сами являются базовой основой построения или реорганизации аппаратной системы клетки (белков, ферментов и других функциональных устройств). Сердцем управляющей системы живой клетки являются генетическая память и локальные биопроцессорные контуры управления, находящиеся, как в цитоплазме клетки – трансляционный аппарат, так и биопроцессорные системы верхнего уровня, находящиеся в клеточном ядре – транскрипционный аппарат.
Живая клетка как элементарная основа жизни является не только центром “автоматизированной” переработки вещества, энергии и информации, но и объектом постоянной реконструкции её компонентов, надмолекулярных ансамблей и органелл. Она является центром синтеза и распада различных биологических макромолекул и структур. Причем, и это важно отметить, – все биологические функции и химические процессы в клетке поддерживаются и осуществляются только под руководством генетической информации. Следовательно, живая клетка самоуправляется и “реконструируется” информационным путём. Это удивительное свойство является основным фактором, определяющим движение клетки по пути клеточных циклов развития и самовоспроизведения.
Как видно из структурной схемы, клетка состоит из двух основных взаимозависимых и взаимосвязанных подсистем: из информационной управляющей (матричные процессы) и управляемой биохимической (ступенчатые процессы). Живая клетка является мультипроцессорной системой, она состоит из нескольких функциональных биопроцессорных блоков:
1) ядерных биопроцессорных блоков управления верхнего уровня (генетическая память, транскрипционный аппарат, устройства управления, блоки процессинга и каналы ввода/вывода);
2) цитоплазматических молекулярных биопроцессорных блоков управления (оперативная память РНК, трансляционный аппарат, устройство управления, блоки конформационного преобразования и процессинга);
3) выходного управляющего звена (ферментов и других клеточных белков), функционирующих во всех биопроцессорных системах и операционных блоках катаболизма, амфиболических путей, синтеза элементной базы и блока синтеза различных макромолекул клетки (белков, компонентов мембран и органелл и т. п.)
Именно в этих операционных блоках осуществляется управление ступенчатыми химическими реакциями клеточного метаболизма [6].
6. Генетическая память.
Хранилищем и источником наследственной информации в каждой живой клетке является ДНК хромосом. Генетическая память, как долговременное запоминающее устройство, служит для длительного хранения данных и программ. Однако, естественно, всегда надо помнить, что генетическая память хромосом – это понятие несравненно более обширное и более грандиозное, чем, к примеру, память компьютерная. К этой многосложной молекулярной структуре, отождествляющей “спираль жизни”, нельзя относиться без особого уважения и благоговения.
Генетическая память обладает феноменальными информационными возможностями. И, действительно, в последовательности оснований внутри двойной спирали ДНК закодирована вся необходимая информация для осуществления жизнедеятельности, развития и самовоспроизведения живой системы. Генетическая память имеет: операционную систему; полный набор программных средств для обслуживания ступенчатых процессов катаболизма и энергетического обеспечения; программные средства для обслуживания процессов биосинтеза молекул, систем репарации ДНК, аппаратных устройств ввода молекулярной информации питательных веществ и вывода конечных продуктов обмена веществ и т. д.
Генетическая память живой клетки имеет пакет программ, кодирующих и программирующих молекулярные средства и механизмы самовоспроизведения, которые начинают синтезироваться и действовать строго в соответствии с общей программой развития. А программирование самой генетической памяти осуществляется особым репликативным аппаратом живой клетки в S-период её развития, и дочерние клетки получают полный дубликат генетического материала. Этот аппарат является молекулярной биопроцессорной системой репликации.
Программное обеспечение клетки – это важнейший проблемный вопрос молекулярной биологической информатики. В генетической памяти хранится множество пакетов программ, обеспечивающих те или иные биологические функции и процессы. Поэтому “автоматизированное” управление процессами решения различных биологических задач в живой системе осуществляется на основе принципа программного управления. Для программной переработки генетической информации широко применяется принцип микропрограммного управления, когда выполнение одной биологической операции (например, в процессах репликации, транскрипции или трансляции), распадается на последовательность отдельных элементарных операций. А главной задачей программных средств, используемых в живых клетках, является обеспечение оперативного взаимодействия управляющей системы с молекулярными объектами управления (субстратами). Причем, ключ к решению биологических задач, с помощью управляющей системы, лежит не в переборе вариантов при поиске решений.
Программы, загруженные в структуру белковых и других биомолекул, реализуют стереохимические принципы узнавания и динамического взаимодействия, которые гарантируют точность матричного спаривания биологических молекул и проверку их на комплементарное соответствие друг другу. То есть в процессе взаимодействия биомолекул широко используются принципы обратной связи. Этим достигается не только повышенная помехоустойчивость при прохождении управляющей информации, но и высокая достоверность передачи сообщений. В свете рассмотренных идей (молекулярной биохимической логики и информатики), становятся понятными и механизмы организации доступа к информации генетической памяти. Хромосомы ядра, благодаря присутствию в них структурных и регуляторных белков, а также “малых” двухцепочечных РНК, являются чрезвычайно активными динамическими компонентами клетки. Гибкость ДНК в составе хромосом позволяет регуляторным белкам и РНК информационно связываться с различными её участками и влиять на транскрипцию генов. При этом каждый из этих управляющих белков и “малых” РНК, благодаря загруженной в их структуру информации и своим стереохимическим кодовым компонентам, – четко знает свою функциональную роль.
Согласованность действия различных управляющих, а также регуляторных белков и “малых” РНК достигается за счет генетической информации, которая заранее была загружена в их структуру. А загруженные в их структуру программы являются составляющими того пакета программ, который предназначен как для организации автоматического доступа к генам ДНК, так и для управления и регуляции процессами транскрипции генетического материала. В силу этих обстоятельств отдельные домены хроматина в хромосомах в процессе функционирования разворачиваются, а после окончания считывания информации с генов ДНК вновь упаковываются. Поэтому сами хромосомы представляют собой активные динамические структуры, в разных участках которых идут процессы считывания информации с ДНК.
Рекомендуем скачать другие рефераты по теме: оформление диплома, курсовая работа на тему предприятие.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6 | Следующая страница реферата