Сурьма - Случай в Штальгаузенском монастыре
| Категория реферата: Биология и химия
| Теги реферата: диплом работа, реферат н
| Добавил(а) на сайт: Annikov.
Предыдущая страница реферата | 1 2
Известен другой метод очистки - электролитический. Ток, проходя через электролит, которым заполнены большие ванны, проявляет особое внимание к атомам сурьмы и препровождает их на один из электродов (катод), где они тесно "прижимаются" друг к другу. К примесям же такого почтения нет, и им приходится оставаться в растворе.
Рафинированная сурьма содержит уже не более 0,5 - 0,8% чужих атомов, но и такой металл удовлетворяет не всех потребителей: для полупроводниковой промышленности, например, требуется сурьма 99,999%-ной чистоты. Чтобы получить ее, применяют кристаллофизический метод очистки - зонную плавку. Длинный цилиндрический слиток сурьмы укладывают в графитовый контейнер (в виде корытца) и помещают в кварцевую трубку, вокруг которой расположен кольцевой электрический нагреватель. В процессе плавки нагреватель перемещается относительно слитка, расплавляя поочередно все новые и новые порции металла.
Когда "покинутая" нагревателем порция сурьмы застывает, все содержащиеся в ней примеси перебираются в следующую зону, где металл находится в жидком виде. Это происходит в силу физического закона, по которому при кристаллизации вещества примеси "не имеют права" застывать вместе с ним, а должны оставаться в жидкой фазе. (За примерами ходить далеко не надо: ледяной панцирь, покрывающий зимой северные моря, не содержит солей, хотя в морской воде их довольно много).
Постепенно перемещаясь вместе с зоной расплавленного металла, все примеси в конце концов оказываются на краю слитка. Эту часть его отрезают, а всю остальную сурьму - теперь уже сверхчистую - сдают на склад готовой продукции. Впрочем иногда, в особо ответственных случаях, зонную плавку повторяют несколько раз. Для соблюдения химической стерильности процесс ведут в атмосфере инертного газа (аргона), не желающего вступить ни в какие реакции.
Подвергнутый многостадийной очистке металл способен удовлетворить самого взыскательного потребителя. Не случайно на Всемирной выставке в Брюсселе, проходившей в 1958 году, сверхчистая сурьма Кадамджайского комбината была признана лучшей в мире и утверждена в качестве мирового эталона.
Именно такую сурьму используют как легирующую добавку (всего-навсего 0,000001%!) к одному из важнейших полупроводниковых материалов - германию, что заметно улучшает его качество. Но если в ней на тысячу атомов окажется хотя бы один атом меди, то добавка вместо пользы принесет только вред. Вот почему прежде чем попасть на заводы, изготовляющие полупроводниковые приборы, сурьма и проходит тот длинный путь, о котором было рассказано выше. Кстати, некоторые ее соединения (в частности, с галлием и индием) - сами отличные полупроводники. Многие полупроводниковые материалы, содержащие сурьму, были получены в условиях невесомости на борту советской орбитальной научной станции "Салют-6" и американской станции "Скайлэб".
На изготовление полупроводников расходуется сравнительно немного сурьмы. Основное ее количество идет на производство разнообразных сплавов - их насчитывается около двухсот.
Еще в трудах крупнейшего металлурга средневековья Георга Агриколы, жившего в XVI веке, мы находим такие строки: "Если путем сплавления определенная порция сурьмы прибавляется к олову, получается типографский сплав, из которого изготовляется шрифт, применяемый теми, кто печатает книги".
И сегодня сплав свинца с сурьмой и оловом (гарт) - непременный атрибут любой типографии. Расплавленная сурьма, в отличие от других металлов (кроме висмута и галлия), при затвердевании увеличивает свой объем. Поэтому при отливке шрифта типографский сплав, содержащий сурьму, застывая в литейной матрице, расширяется, благодаря чему плотно ее заполняет и, следовательно, очень точно воспроизводит зеркальное изображение буквы, цифры или какого-либо иного знака, который затем, при печати, должен быть перенесен на бумагу. Помимо этого, сурьма придает типографскому сплаву твердость и износостойкость - весьма важные свойства, если учесть, что каждая литера выполняет свои функции десятки тысяч раз. На склонности остывающей сурьмы к "полноте" основано использование ее сплавов для художественного литья, где необходимо сохранять тончайшие детали оригинала.
Твердые и коррозионностойкие сплавы свинца с сурьмой применяют в химическом машиностроении (для облицовки ванн и другой кислотоупорной аппаратуры), а также для изготовления труб, по которым транспортируются кислоты, щелочи и другие агрессивные жидкости. Из них же делают оболочки, окутывающие различные кабели (электрические, телеграфные, телефонные), решетки свинцовых аккумуляторов, сердечники пуль, дробь, шрапнель.
Широко применяют подшипниковые сплавы (баббиты), в состав которых входят олово, медь и сурьма. Первый сплав такого типа был создан еще в 1839 году американским инженером И. Баббитом. Несмотря на "солидный возраст", эти материалы до сих пор в большом почете у конструкторов. Особая структура - наличие твердых частиц в мягкой пластичной основе - обусловливает высокие антифрикционные свойства баббитов: малый коэффициент трения в подшипниках, залитых этими сплавами, хорошую прирабатываемость, большое сопротивление истиранию. Неплохой антифрикционный материал - чугун, легированный сурьмой (0,5%).
В последние годы сурьма стала оказывать кое-какие "услуги"... криминалистике. Дело в том, что летящая пуля оставляет за собой вихревой поток, в котором имеются микроколичества ряда элементов-свинца, сурьмы, бария, меди. Оседая на землю, пол или другую поверхность, они оставляют на ней невидимый след.
Невидимый? Оказывается, современная наука позволяет увидеть этот след, а значит, и узнать направление пули. На обследуемую поверхность накладывают полоски влажной фильтровальной бумаги, затем их помещают в ядерный реактор и подвергают бомбардировке нейтронами. Вследствие "обстрела" некоторые атомы, прихваченные бумагой (в том числе атомы сурьмы), превращаются в радиоактивные изотопы, а степень их активности позволяет судить о содержании этих элементов в пробах и таким образом определить траекторию и длину полета пули, характеристику самой пули, оружия и боеприпасов.
Разнообразна "деятельность" и соединений сурьмы. Их используют, например, для вулканизации каучука в производстве резины. Триоксидь сурьмы служит огнестойкой добавкой к тканям - ею пропитывают театральные занавеси, драпировки, брезенты. Изготовленной на его основе краской "сурьмин" окрашивают подводную часть и надпалубные постройки кораблей. В качестве пигмента соединения этого элемента входят в состав многих красок, применяемых в живописи ("неаполитанская желтая"), в производстве керамики и фарфора, белого молочного стекла и эмали для кухонной посуды.
Соединения сурьмы каждый из нас не раз держал в руках: боковая поверхность спичечной коробки покрыта составом, который, наряду с красным фосфором, содержит сульфид сурьмы (они-то и придают "терке" темно-коричневый цвет).
Некоторые ее соли явно склонны к пиротехническим эффектам. Впрочем, и чистая сурьма способна устроить необыкновенно красивый фейерверк: если в сосуд, заполненный хлором, осторожно, небольшими порциями, всыпать мелкий порошок сурьмы, то крупицы ее тут же будут вспыхивать яркими звездочками; сосуд же вскоре наполнится белым дымом образовавшегося пентахлорида. А взрывчатая сурьма (об этой модификации говорилось выше) настолько неустойчива, что взрывается при любом соприкосновении или небольшом нагреве, превращаясь при этом в обыкновенную серую сурьму.
Не так давно, в 1974 году, в СССР было зарегистрировано открытие, в основе которого лежат сложные биохимические процессы, совершаемые... бактериями.
Многолетнее изучение сурьмяных месторождений показало, что сурьма в них постепенно окисляется, хотя при обычных условиях такой процесс не протекает: для этого нужны высокие температуры - более 300 °С. Какие же причины заставляют сурьму нарушать химические законы? Микроскопическое исследование образцов окисленной руды показало, что они густо "заселены" неизвестными прежде микроорганизмами, которые и были виновниками окислительных "событий" на рудниках. Но, окислив сурьму, бактерии не успокаивались на достигнутом: энергию окисления они тут же "пускали в ход" для осуществления хемосинтеза, т. е. для превращения углекислоты в органические вещества.
Явление хемосинтеза впервые обнаружено и описано еще в 1887 году русским ученым С. Н. Виноградским. Однако до сих пор науке были известны всего четыре элемента, при бактериальном окислении которых выделяется энергия для хемосинтеза: азот, сера, железо и водород. Теперь к ним прибавилась сурьма.
Скачали данный реферат: Anufriev, Молчанов, Sijalov, Majorov, Коржуков, Zhivkov.
Последние просмотренные рефераты на тему: курсовики скачать бесплатно, дипломная работа школа, ответы по биологии класс, гражданин реферат.
Категории:
Предыдущая страница реферата | 1 2