Вероятность в биологии
| Категория реферата: Биология и химия
| Теги реферата: конспект, кризис реферат
| Добавил(а) на сайт: Kvasov.
Предыдущая страница реферата | 1 2 3 4 5 6 | Следующая страница реферата
Здесь уместно сказать то, что результаты своих исследований Мендель доложил в феврале 1865 года Обществу естествоиспытателей в Брюнне. Слушатели не поняли исключительной важности представленного доклада. Они не догадались, что в этой работе суждено произвести настоящую революцию в науке о наследственности. В 1866 году доклад Менделя был напечатан в Брюнском бюллетене и разослан по списку 120 научным учреждениям разных стран. К сожалению, Дарвин этого бюллетеня не получил.
Мир давно признал Менделя как основателя современной генетики. Это призвание пришло лишь в 1900 году, через пятнадцать лет после кончины талантливого исследователя.
Закономерности случайного комбинирования генов при скрещивании
Хромосомы и гены.
Напомним некоторые сведенья из цитологии – раздела биологии, изучающего клетку. Различают два типа клеток – половые клетки (гаметы) и неполовые, или иначе, соматические. В ядре каждой клетки находятся нитевидные хромосомы, представляющие собой гигантские молекулы дезоксирибонуклеиновой кислоты (сокращенно: ДНК) в соединении с молекулами белков. В хромосомах, а точнее, в молекулах ДНК содержится вся информация, определяющая генотип данного организма. Отдельные участки хромосомы, «ответственные» за те или иные наследственные признаки, называют генами. Каждая хромосома содержит несколько сотен генов. Иногда хромосому упрощенно представляют в виде своеобразной нити, на которую, словно бусинки, нанизаны различные гены.
Каждому виду соответствует определенный набор хромосом, определяемый количеством хромосом и их генными характеристиками. Например, у овса имеются 42 хромосомы, у плодовой мушки дрозофилы 8 хромосом, у шимпанзе 48 хромосом, у человека 46 хромосом. Ядро каждой соматической клетки содержит полный набор хромосом, соответствующий данному виду. Это означает, что в каждой клетке организма содержится вся наследственная информация.
Приведенные выше для нескольких видов числа хромосом характеризуют хромосомные наборы в соматических, но не в половых клетках. Каждая половая клетка (гамета) имеет в два раза меньше хромосом, чем соматическая.
Начнем с хромосомного набора соматической клетки. В этот набор входят две половые хромосомы. У женских особей обе половые хромосомы одинаковые (две X-хромосомы), у мужских особей половые хромосомы разные ( одна X-хромосома и одна Y-хромосома). Неполовые хромосомы, имеющиеся в соматической клетке, разбиваются на пары; попавшие в одну пару хромосомы (их называют гомологичными ) очень похожи друг на друга. Каждая содержит одно и тоже число генов, одинаковым образом расположенных в той и другой хромосомных нитях, а главное, отвечающих за одни и те же виды признаков. Например, у гороха есть пара гомологических хромосом, каждая из которых содержит ген окраски семян. У этого гена, как и у других, есть две разновидности (их называют аллелями) – доминантная и рецессивная. Доминантная разновидность гена окраски (доминантный аллель) соответствует желтому цвету, а рецессивная (рецессивный аллель) зеленому. Если в обеих гомологичных хромосомах рассматриваемый ген представлен одинаковыми аллелями, то данная особь гомозиготна по рассматриваемому признаку. Если же в одной хромосоме содержится один аллель, а в другой гомологичной хромосоме другой, то данная особь гетерозиготна. В ее фенотипе проявляется признак, отвечающий доминантному аллелю.
Теперь рассмотрим хромосомный набор гаметы (половой клетки). Гамета имеет только одну половую хромосому. У женской особи это всегда X-хромосома. У мужской особи это может быть либо X-хромосома (в одних гаметах), либо Y-хромосома (в других гаметах). Кроме единичной половой хромосомы, гамета содержит по одной хромосоме из каждой пары гомологичных хромосом. Допустим, что имеются всего две пары гомологичных хромосом и с каждой парой сопоставляется некоторый определенный признак. Пусть данная особь гетерозиготна по обоим видам признаков. Такая особь будет иметь четыре типа гамет, что хорошо видно из рисунка 6.2, а (красным цветом на рисунке показаны хромосомы, несущие доминантные аллели, а синим рецессивные). В случае, изображенном на рисунке 6.2,б, рассматриваемая особь гомозиготна по одному признаку и гетерозиготна по другому. В этом случае имеется только два типа гамет.
При оплодотворении мужская гамета сливается с женской. Оплодотворенная женская гамета (ее называют зиготой) имеет полный хромосомный набор. В каждой паре гомологичных хромосом одна хромосома получена от отца, а другая от матери. Организм развивается из зиготы посредством клеточных делений. В каждом случае делению клетки предшествует дублирование (удвоение) всех хромосом, содержащихся в ядре клетки. В результате ядро каждой соматической клетки организма содержит тот же самый набор хромосом и генов, какой имела зигота. Когда организм достигает полового созревания, в нем происходят особые процессы, приводящие к образованию гамет.
Закон расщепления.
Будем рассматривать какой-нибудь один признак. Пусть это будет, как в одном из опытов Менделя, цвет семян гороха. Рассмотрим результаты этого опыта, используя представления современной цитологии.
В первом поколении гидридов все особи гетерозиготны по рассматриваемому признаку. В каждой соматической клетке присутствуют оба аллеля окраски семян – желтый (доминантный аллель) и зеленый (рецессивный). Все семена этих гибридов, естественно, желтые. По рассматриваемому здесь признаку каждый гибрид первого поколения имеет два типа гамет – с доминантным аллелем (А-гаметы) и с рецессивным (а-гаметы). Ясно, что существуют как женские, так и мужские А-гаметы и а-гаметы.
Перейдем к гибридам второго поколения. Каждый новый организм развивается из зиготы, которая образуется при соединении мужской гаметы типа А или а с женской гаметой типа А или а. Возможно, очевидно, четыре альтернативы ( рис. 6.3):
АА – мужская А-гамета соединяется с женской А-гаметой,
Аа – мужская А-гамета соединяется с женской а-гаметой,
аА – мужская а-гамета соединяется с женской А-гаметой,
аа – мужская а-гамета соединяется с женской а-гаметой.
Все эти альтернативы равновероятны. Следовательно, среди достаточно большого числа зигот одну четверть будут составлять АА-зиготы, одну четверть аа-зиготы и, наконец, половину Аа-зиготы (здесь объединены варианты Аа и аА как равноправные с точки зрения наследования признаков). Если зигота содержит хотя бы один доминантный аллель, то в фенотипе проявляется доминантный признак (желтый цвет семян). Следовательно, растения, развившиеся из АА- и Аа-зигот, будут иметь желтые семена, а растения развившиеся из аа-зигот, - зеленые. Мы видим, таким образом, что вероятность появления особи с доминантным признаком равна ¾, а вероятность появления особи с рецессивным признаком равна ¼. Отсюда следует полученное Менделем соотношение 3 : 1, количественно характеризующее расщепление признака при переходе от первого поколения гибридов ко второму. Мендель не только выявил это соотношение, но и правильно объяснил его, используя понятие вероятности. Все это и составило содержание первого закона Менделя, известно также как закон расщепления.
Подчеркнем: та или иная зигота образуется в результате случайной встречи мужской и женской гамет того или иного типа. Большое число подобных случайных встреч с необходимостью выявляет определенную закономерность, которую и выражает первый закон Менделя.
Заметим, что из АА- и аа-зигот развиваются гомозиготные (по рассматриваемому признаку) особи, тогда как из Аа-зигот развиваются гетерозиготные особи, у которых расщепление признака при переходе к следующему поколению будет происходить опять-таки по закону 3 : 1.
Закон независимого распределения генов.
Рассмотрим гибриды второго поколения, учитывая теперь не один какой-нибудь признак, а сразу два признака. Будем полагать (это очень важно), что отвечающие за выбранные признаки гены находятся в разных парах гомологичных хромосом. Примером могут служить цвет семян гороха (один признак) и форма семян (другой признак). Будем обозначать: А – доминантный аллель цвета (желтый цвет), а – рецессивный аллель цвета (зеленый цвет), В – доминантный аллель формы (гладкие семена), в – рецессивный аллель формы (морщинистые семена).
Каждый гибрид первого поколения имеет четыре типа мужских и четыре типа женских гамет: АВ, Ав, аВ, ав (напомним рисунок 6.2,а). Образование зиготы происходит при соединении двух гамет (мужской и женской) любого из указанных четырех типов. Возможны 16 альтернатив; они даны на рисунке 6.4. Все эти альтернативы равновероятны. Следовательно, доля числа зигот разного типа (по отношению к общему числу зигот, которое должно быть достаточно большим) такова: для зигот типа АВ*АВ – 1/16, Ав*Ав – 1/16, аВ*аВ – 1/16, ав*ав – 1/16, АВ*Ав (с учетом также Ав*АВ) – 1/8, АВ*аВ (с учетом аВ*АВ) – 1/8, АВ*ав (с учетом ав*АВ) – 1/8, Ав*аВ (с учетом аВ*Ав) – 1/8, Ав*ав (с учетом ав*Ав) - 1/8, аВ*ав (с учетом ав*аВ) – 1/8. Принимая во внимание подавление рецессивных аллелей соответствующими доминантными, заключаем, что вероятность появления особи с желтыми гладкими семенами во втором поколении гибридов равна сумме вероятностей образования зигот типа АВ*АВ, АВ*Ав, АВ*аВ, АВ*ав, Ав*аВ, т.е. равна 1/16+1/8+1/8+1/8+1/8=9/16. Вероятность появления особи с желтыми морщинистыми семенами равна сумме вероятностей образования зигот типа Ав*Ав и Ав*ав, т.е. равна 1/16+1/8=3/16. Вероятность появления особи с зелеными гладкими семенами равна сумме вероятностей образования зигот типа аВ*аВ и аВ*ав, т.е.равна 1/16+1/8=3/16. Наконец, вероятность появления особей с зелеными морщинистыми семенами равна вероятности образования зиготы ав*ав, т.е. равна 1/16. Таким образом, числа различных фенотипов ( по двум рассматриваемым признакам ) во втором поколении гибридов относятся к друг другу как 9:3:3:1. Все это и составляет сущность второго закона Менделя, согласно которому расщепление по одному признаку идет независимо от расщепления по другому.
Закон Моргана.
Рекомендуем скачать другие рефераты по теме: скачать реферат, курсовые.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6 | Следующая страница реферата