Биологическое окисление
| Категория реферата: Рефераты по биологии
| Теги реферата: рассказы, сообщение на тему
| Добавил(а) на сайт: Logvin.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата
Быстрое превращение АДФ в АТФ в митохондриях позволяет поддерживать высокое отношение концентраций ATФ/AДФ в клетках. С помощью особого белка, встроенного во внутреннюю мембрану, AДФ транспортируется в матрикс в обмен на АТФ по принципу антипорта. В результате молекулы AДФ, высвобождаемые при гидролизе АТФ в цитозоле, быстро поступают в митохондрию для «перезарядки», в то время как молекулы АТФ, образующиеся в матриксе в процессе окислительного фосфорилирования, тоже быстро выходят в цитозоль, где они нужны. В организме человека молекулы АТФ за сутки, что позволяет поддерживать в клетке концентрацию АТФ, более чем в 10 раз превышающую концентрацию АДФ.
В процессе окислительного фосфорилирования каждая пара электронов НАДH
обеспечивает энергией образование примерно трех молекул АТФ. Пара
электронов ФАДH2, обладающая меньшей энергией, дает энергию для синтеза
только двух молекул АТФ. В среднем каждая молекула ацетил-СоА поступающая в
цикл лимонной кислоты, дает около 12 молекул АТФ. Это означает, что
при окислении одной молекулы глюкозы образуются 24 молекулы АТФ, а при окислении одной молекулы пальмитата - жирной кислоты с 16
углеродными атомами - 96 молекул АТФ. Если учесть также экзотермические
реакции, предшествующие образованию ацетил-СоА, окажется, что полное
окисление одной молекулы глюкозы дает около 36 молекул АТФ, тогда как при
полном окислении пальмитата образуется примерно 129 молекул АТФ. Это
максимальные величины, так как фактически количество синтезируемого в
митохондриях АТФ зависит от того, какая доля энергии протонного градиента
идет на синтез АТФ, а не на другие процессы. Если сравнитъ изменение
свободной энергии при сгорании жиров и углеводов прямо до СО2 и Н2О с общим
количеством энергии, запасаемой в фосфатных связях АТРФ в
процессах биологического окисления, окажется, что эффективность
преобразования, энергии окисления в энергию АТФ часто превышает 50%.
Поскольку вся неиспользованная энергия высвобождается в виде тепла, крупные
организмы нуждались бы в более эффективных способах отвода тепла в
окружающую среду.
Огромное количество свободной энергии, высвобождаемое при окислении, может эффективно использоваться только мелкими порциями. В сложном процессе окисления участвует много промежуточных продуктов, каждый из которых лишь незначительно отличается от предыдущего. Благодаря этому высвобождаемая энергия дробится на меньшие количества, которые можно эффективно преобразовывать с помощью сопряженных реакций в высокоэнергетические связи молекул АТФ и НАДH .
В 1960 г. было впервые показано, что различные мембранные белки, участвующие в окислительном фосфорилировании, могут быть выделены без
потери активности. От поверхности субмитохондриальных частиц удалось
отделить и перевести в растворимую форму усеивающие их крошечные белковые
структуры. Хотя субмитохондриальные частицы без этих сферических структур
продолжали окислять НАДH в присутствии кислорода, синтеза АТФ при этом не
происходило. С другой стороны, выделенные структуры действовали как
АТФазы, гидролизуя АТФ до АДФ и Фн. Когда сферические структуры
(названные F1-АТФазами) добавляли к лишенным их субмитохондриальным
частицам, реконструированные частицы вновь синтезировали АТФ из AДФ и Фн.
F1- АТФаза - это часть большого, пронизывающего всю толщу мембраны
комплекса, который состоит по меньшей мере из девяти различных
полипептидных цепей. Этот комплекс получил название АТФ-синтетаза; он
составляет около 15% всего белка внутренне митохондриальнои мембраны.
Весьма сходные АТФ-синтетазы имеются в мембранах хлоропластов и бактерий.
Такой белковый комплекс содержит трансмембранные каналы для
протонов, и происходит только тогда, когда через эти каналы проходят
протоны вниз по своему электрохимическому градиенту.
АТФ-синтетаза может действовать в обратном направлении - расщеплять
АТФ и перекачивать протоны. Действие АТФ-синтетазы обратимо: онa способна
использовать как энергию гидролиза АТФ для перекачивания протонов через
внутреннюю митохондриальную мембрану, так и энергию потока протонов по
электрохимическому градиенту для синтеза АТФ. Таким образом, АТФ-синтетаза
- это обратимая сопрягающая система, которая осуществляет взаимопревращение
энергии электрохимического протонного градиента и химических связей.
Направление ее работы зависит от соотношения между крутизной протонного
градиента и локальной величиной (G для гидролиза АТФ.
АТФ-синтетаза получила свое название в связи с тем, что в обычных условиях npoтоннoro градиента, поддерживаемого дыхательной цепью, синтезирует большую часть всего АТФ клетки. Число протонов, необходимое для синтеза одной молекулы АТФ, в точности не известно. При прохождении через АТФ-синтетазу протонов синтезируется одна молекула АТФ.
Как будет работать в данный момент АТФ-синтетаза - в направлении
синтеза или гидролиза АТФ, - зависит от точного баланса между изменениями
свободной энергии для прохождения трех протонов через мембрану в матрикc и
для синтеза АТФ в матриксе. Как уже говорилось, величина (Gсинт.АТФ
определяется концентрациями трех веществ в матриксе митохондрии - АТФ, AДФ
и Фн. При постоянной протонодвижущей силе АТФ-синтетаза будет синтезировать
ATФ тех пор, пока отношение АТФ к AДФ и Фн не достигнет такого значения, при котором величина (Gсинт.АТФ станет в точности равна +15,2ккaл/мoль. При
таких условиях синтез АТФ будет точно уравновешиваться его гидролизом.
Предположим, что в связи с реакциями, требующими затраты энергии, в цитозоле внезапно гидролизовалось большое количество АТФ, и это привело к падению отношения АТФ:AДФ в матриксе митохондрии. В этом случае (Gсинт. понизится и АТФ-синтетаза вновь переключится на синтез АТФ, пока не восстановится исходное отношение АТФ:AДФ. Если же протонодвижущая сила внезапно снизится и будет поддерживаться на постоянном уровне, то АТФ- синтетаза начнет расщеплять АТФ, и эта реакция будет продолжаться до тех пор, пока соотношение между концентрациями ATФ и AДФ не достигнет какого-то нового значения (при котором (Gсинт.АТФ = +13,8 ккал/моль), и так далее.
Если АТФ-синтетаза в норме не транспортирует Н+ из матрикса, то дыхательная цепь, находящаяся во внутренней митохондриальной мембране, при нормальных условиях переносит через эту мембрану протоны, создавая таким образом электрохимический протонный градиент, доставляющий энергию, для синтеза AТФ.
Большинство переносчиков электронов, входящих в состав дыхательной цепи, поглощают свет, и их окисление или восстановление сопровождается изменением цвета. Обычно спектр поглощения и реакционноспособность каждого переносчика достаточно характерны, что позволяет даже в неочищенном экстракте прослеживать изменения его состояний с помощью спектроскопии. Это дало возможность выделить такие переносчики задолго до того, как стала понятна их истинная функция. Например, цитохромы были открыты в 1925 г. как соединения, которые быстро окисляются и восстанавливаются у таких различных организмов, как дрожжи, бактерии и насекомые. Наблюдая клетки и ткани с помощью спектроскопа, удалось идентифицировать три типа цитохромов, которые различались по спектрам поглощения и названы цитохромами а, b и c. Клетки содержат несколько видов цитохромов каждого типа, и классификация по типам не отражает их функцию.
Самый простой переносчик электронов представляет собой небольшую гидрофобную молекулу, растворенную в липидном бислое и называемую убихиноном или коферментом Q. Он способен принять или отдать как один, так и два электрона и временно захватывает из среды протон при переносе каждого электрона.
Рисунок 4. Структура убихинона.[10,1993]
Дыхательная цепь содержит три больших ферментных комплекса, встроенных во внутреннюю мембрану
Мембранные белки трудно выделить в виде интактных комплексов,так как они нерастворимы в большинстве водных растворов, а такие вещества, как детергенты и мочевина, необходимые для их солюбилизации, могут нарушать нормальное белок-белковое взаимодействие. Однако в начале 1960-х гг. было обнаружено, что с помощью относительно мягких ионных детергентов, таких как дезоксихолат, можно солюбилизировать некоторые компоненты митохондриальной внутренней мембраны в нативной форме. Это позволило идентифицировать и выделить три главных связанных с мембраной комплекса дыхательных ферментов на пути от НАДH до кислорода.
Рисунок 5. Дыхательные ферментные комплексы.[1,1994]
1. НАДН-дегидрогеназный комплекс - самый большой из дыхательных ферментных комплексов - имеет молекулярную массу свыше 800000 и содержит более 22 полипептидных цепей. Он принимает электроны от НАДH и передает их через флавин и по меньшей мере пять железо-серных центров на_ убихинон - небольшую жирорастворимую молекулу, передаюшую электроны на второй комплекс дыхательных ферментов-комплекс b-c1.
2. Комплекс b-с1 состоит по меньшей мере из 8 разных полипептидных
цепей и, вероятно, существует в виде димера с молекулярной массой 500000.
Каждый мономер содержит три тема, связанных с цитохромами, и железо-серный
белок. Комплекс принимает электроны от убихинона и передает цитохрому с, небольшому периферическому мембранному белку, который затем переносит их на цитохром-оксидазный комплекс.
3.Цитохромоксидазный комплекс (цитохром аа3) - наиболее изученный из трех
комплексов. Он состоит не менее чем из восьми различных полипептидных цепей
и выделен как димерс молекулярной массой 300000; каждый мономер содержит
два цитохрома и два атома меди.этот комплекс принимает электроны от
цитохрома с и передает их на кислород.
Цитохромы, железо-серные центры и атомы меди способны переносит одновременно только один электрон. Между тем, каждая молекула НАДН отдает два электрона и каждая молекула О2 должна принять 4 электрона при образовании молекулы воды. В электронтранспортной цепи имеется несколько электронсобирающих и электронраспределяющих участков, где согласовывается разница в числе электронов. Так, например, цитохромоксидазный комплекс принимает от молекул цитохрома с по отдельности 4 электрона и в конечном итоге передает их на одну связанную молекулу О2, что ведет к образованию двух молекул воды. На промежуточных ступенях этого процесса два электрона, прежде чем перейти к участку, связывающему кислород, поступают в гем цитохрома а, и связанный с белком атом меди, Cua. В свою очередь участок связывания кислорода содержит еще один атом меди и гем цитохрома а3. Однако механизм образования двух молекул воды в результате взаимодействия связанной молекулы О2 с четырьмя протонами в точности не известен.
В большинстве клеток с цитохромоксидазой взаимодействует около 90% всего поглощаемого кислорода. Токсичность таких ядов, как цианид и азид, связаны с их способностью прочно присоединяться к цитохромоксидазному комплексу и блокировать тем самым весь транспорт электронов.
Два компонента, переносящие электроны между тремя главными ферментными комплексами дыхательной цепи, - убихинон и цитохром с – быстро перемещаются путем диффузии в плоскости мембран.
Столкновения между этими подвижными переносчиками и ферментными комплексами вполне позволяют объяснить наблюдаемую скорость переноса электронов (каждый комплекс отдает и принимает один электрон каждые 5-10 миллисекунд). Поэтому нет необходимости предполагать структурную упорядоченность цепи белков-переносчиков в липидном бислое; в самом деле, ферментные комплексы, видимо существуют в мембране как независимые компоненты и упорядоченный перенос электронов обеспечивается только специфичностью функциональных взаимодействий между компонентами цепи.
В пользу этого говорит и тот факт, что различные компоненты дыхательной цепи присутствуют в совершенно разных количествах. Например, в митохондриях сердца на каждую молекулу НАДН-дегидрогеназного комплекса приходятся З молекулы | комплекса b-c1 комплекса, 7 молекул цитохромоксидазного комплекса, 9 молекул цитохрома с и 50 молекул убихинона; весьма различные соотношения этих белков обнаружены и в некоторых других клетках.
Значительный перепад окислительно-восстановительного потенциала на каждом из трех комплексов дыхательной цепи доставляет энергию, необходимую для перекачивания протонов.
Такую пару, как Н2О и ЅО2 (или НАДH и НАД+), называют сопряженной окислительно-восстановительной парой, так как один из ее членов превращается в другой, если добавить один или несколько электронов и один или несколько протонов (последних всегда достаточно в любом водном растворе). Так, например, ЅО2 + 2е + 2Н+ ( Н2О
Хорошо известно, что смесь соединений, образующих сопряженную кислотно- щелочную пару, в соотношении 50:50 действует как буфер, поддерживающий определенное «давление протонов» (рН), величина которого определяется константой диссоциации кислоты. Точно таким же образом смесь компонентов пары в соотношении 50:50 поддерживает определенное «давление электронов», или окислительно-восстановительный потенциал (редокс- потенциал) Е, служащий мерой сродства молекулы-переносчика к электронам.
Рекомендуем скачать другие рефераты по теме: роботы реферат, изложение 6 класс.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата