Клетка как архитектурное чудо
| Категория реферата: Рефераты по биологии
| Теги реферата: конспект по чтению, курсовые работы бесплатно
| Добавил(а) на сайт: Маргарита.
Предыдущая страница реферата | 1 2 3 4 5 | Следующая страница реферата
Фибробласты ползут к цели
Все клетки ползут, образуя на переднем крае динамические выросты – псевдоподии разной формы. В псевдоподиях под мембраной клетки полимеризуются актиновые микрофиламенты, которые связываются с миозином и другими белками. Псевдоподии могут прикрепляться к поверхности подложки и, сокращаясь, тянут всю клетку вперед. Таков основной механизм движения.
Очевидно, направление движения определяется тем, на каком краю клетки будут образовываться, прикрепляться и сокращаться псевдоподии.
Что же определяет места образования псевдоподий? Для того чтобы это понять, рассмотрим движения одной из клеток, чаще всего используемых в экспериментах, клеток соединительной ткани – фибробластов. Они поляризованы, то есть образуют псевдоподии лишь на одном или двух полюсах. Эти клетки могут ползти направленно в сторону одного из актиновых полюсов. Их боковые края неактивны.
Благодаря динамике цитоскелета фибробласт может менять форму и направление движений в ответ на изменения окружающего внешнего мира: например, в ответ на изменения питательной среды и поверхности подложки.
Ориентировка этих клеток начинается с того, что клетка получает направленный сигнал из внешнего мира. Это явление называется положительным химиотаксисом. Веществами, вызывающими такой химиотаксис у фибробластов, являются некоторые специальные белки, так называемые факторы роста. Химиотаксические вещества связываются со специальными белками – рецепторами в наружной мембране клетки и активизируют их. Такая активация через какие-то еще неясные промежуточные химические реакции вызывает полимеризацию актина под соответствующим местом мембраны и выпячивание псевдоподии. Если концентрация активирующих веществ с разных сторон клетки различна, то на одном конце клетки будет образовываться и прикрепляться к подложке больше псевдоподий, чем на другом. Контакт с другой клеткой может действовать противоположно химиотаксису: если какой- то участок активного края фибробласта касается поверхности другой клетки, то образование псевдоподий в этом месте края немедленно прекращается; происходит «контактное торможение» или «контактный паралич» этого участка.
Механизмы такого паралича еще неясны, но его биологический смысл очевиден: благодаря параличу клетка не заползает на другую клетку, но коснувшись ее, поворачивает туда, где есть свободная поверхность подложки. Двигаясь, клетки соблюдают взаимную вежливость. Третий внешний фактор, меняющий распределение псевдоподий – различная адгезивность
(«липкость») разных участков поверхности подложки. Например, посадим клетку не на широкое плоское стекло, а на узкий стеклянный цилиндр, диаметр которого (30 микрометров) лишь немногим больше диаметра самой клетки. Тогда фибробласт начинает выбрасывать псевдоподии во все стороны. Но лишь те псевдоподии, которые выброшены вдоль, а не поперек цилиндра, смогут коснуться свободной поверхности стекла и прикрепиться к ней; псевдоподии, выброшенные поперек стекла, такой подложки не найдут, и клетка втянет их обратно.
Таким образом, под влиянием внешних факторов у клетки возникает первичная поляризация образования и прикрепления псевдоподий. Однако такая поляризация часто очень неустойчива. Чтобы направленно двигаться, клетка должна запомнить и стабилизировать эффект внешних факторов. Эта стабилизация выражается в том, что клетка совсем перестает выбрасывать псевдоподии в тех направлениях, где их прикрепление было менее удачно, и начинает их выбрасывать более эффективно только в наиболее удачных направлениях, например, вдоль цилиндра или ближе к источнику химиотаксического вещества.
III. Клетка единая, но делимая
Клеточные фрагменты
самоорганизуются в мини-клетки
Упорядоченное взаимное расположение клеточных структур создается и поддерживается самой живой цитоплазмой, способностью этой цитоплазмы к самоорганизации. Действительно, даже малые фрагменты цитоплазмы, отделенные от остальной клетки, способны восстанавливать подобное взаимное расположение сохранившихся структур. Отрежем от периферии культуральной клетки под микроскопом микроножом небольшой кусочек цитоплазмы, составляющий лишь 3 – 5 % клеточной массы. Через короткое время такой безъядерный фрагмент самоорганизуется: в центральной его части эндоплазму, а на периферии формируются тонкие ламеллы, прикрепленные по краям к подложке фокальными адгезиями. По краю ламеллы часто возникают псевдоподии, и при их помощи фрагмент может ползать по подложке. Старый центр организации микротрубочек – центросома обычно не попадает во фрагмент, и сохранившиеся в нем периферические куски микротрубочек расположены вначале почти параллельно друг другу, однако вскоре эти микротрубочки реорганизуются в единую радиальную систему, у них возникает подобие центра, из которого микротрубочки расходятся во все стороны к краям фрагмента. Разумеется, такие фрагменты в отличие от целых клеток погибают обычно через 1-2 суток: ведь у них нет ядра и потому невозможен синтез новых информационных РНК, следовательно, быстро тормозится синтез белков, необходимых для роста и просто замещения разрушающихся со временем белковых молекул. Тем не менее способность фрагментов к самоорганизации в мини-клетки и движениям в течение отведенного им короткого срока жизни замечательна.
Многоядерные клетки-гиганты тоже самоорганизуются
Фантазия Дж. Свифта создала лилипутов – людей, нормально организованных несмотря на миниатюрные размеры. Ясно, что затем почти неизбежно должен был появиться рассказ о великанах, нормально организованных несмотря на резко увеличенные размеры. Сходным образом логика требует, чтобы за рассказом о самоорганизации клеточных фрагментов следовал рассказ о противоположных системах – гигантских клетках, размеры которых резко превышают нормальные.
Действительно, такие клетки существуют и самоорганизуются.
Многоядерные гиганты в культуре можно получить двумя способами. Первый способ – слить несколько обычных одноядерных клеток в одну, применив специальные агенты, например полиэтиленгликоль или белки некоторых вирусов. Эти агенты способны превратить две контактирующие друг с другом мембраны соседних клеток в одну. в результате таких повторных слияний получается большая многоядерная клетка. Второй способ получения гигантов
– блокада цитокинеза, последней стадии клеточного деления: разделения цитоплазмы двух дочерних клеток после расхождения хромосом. Как известно, цитокинез – результат образования под мембраной клетки между двумя дочерними ядрами сократимого кольца из актиновых микрофиламентов и миозиновых молекул, такое кольцо постепенно сжимается, разделяя две клетки. Функцию сократимого кольца и разделение клеток можно блокировать цитохалазином – веществом, специфически нарушающим формирование микрофиламентов. Цитохалазин нарушает только цитокинез, но не предшествующие стадии деления, поэтому в среде с цитохалазином клетка становится двуядерной. Если блокирование цитохалазином повторять в нескольких циклах деления, то можно получить клетки с 4, 8 и большим числом ядер.
Гигантские клетки, полученные обоими способами, могут жить в культуре долго – многие дни и недели. Важно то, что уже вскоре после образования клетки реорганизуются в единую структуру. Чаще всего такие клетки имеют дисковидную форму, но иногда могут вытягиваться и двигаться. Их ядра собираются в единую группу, занимающую центр клетки, а вокруг них скапливаются везикулярные органеллы, образующие эндоплазму. Вокруг эндоплазмы располагается тонкая ламелла. Как и в одноядерных клетках, на краю гигантов постоянно образуются и сокращаются псевдоподии, а на нижней поверхности ламеллы вблизи края формируются фокальные адгезии, прикрепляющие клетку к дну культуры.
Таким образом, в двух различных системах, в небольших фрагментах, отделенных от клетки, и многоядерных гигантах, полученных слиянием нескольких клеток или блокадой их деления, цитоплазма способна самоорганизоваться в структуру, принципиально сходную со структурой нормальной клетки.
Механизмы самоорганизации цитоплазмы связаны с цитоскелетом
Каковы механизмы удивительной способности клеточной цитоплазмы к самоорганизации? Точно ответить на этот вопрос мы пока не можем, но некоторые соображения могут быть высказаны. Самоорганизация происходит даже в безъядерных клеточных фрагментах, следовательно, ядро для нее не нужно. Важнейшей частью самоорганизации являются перемещения цитоплазматических органелл, образующих эндоплазму в центральной части фрагмента или гиганта, туда же в гигантских клетках перемещаются и ядра.
Естественно предположить, что за эти движения ответственны те же структуры, что и за все другие движения в клетке: фибриллы цитоскелета с прикрепленными к ним и органеллам моторными молекулами.
Один из конкретных механизмов такого рода связан с микротрубочками. В целой клетке микротрубочки растут радиально из центросомы, расположенной около ядра, при этом каждая микротрубочка имеет два конца: центральный минус-конец и периферический плюс-конец. Хотя в отрезанном фрагменте центра нет, микротрубочки в нем перераспределяются, образуя радиальную систему с плюс-концами в центре фрагмента и минус-концами на периферии.
Механизм этого перераспределения был недавно проанализирован Радионовым и
Рекомендуем скачать другие рефераты по теме: инновационная деятельность, рефераты по истории.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 | Следующая страница реферата