Настоящее и будущее биосенсоров
| Категория реферата: Рефераты по биологии
| Теги реферата: реферат здания, украина реферат
| Добавил(а) на сайт: Koltyshev.
Предыдущая страница реферата | 1 2
Биосенсоры на основе других биоматериалов
Многие ферменты дороги и быстро теряют свою активность, использование
выполненных на их основе биосенсоров не может быть экономически
целесообразным. Поэтому применение бактерий, микроорганизмов и
биологических тканей различного происхождения более предпочтительно, поскольку в данном случае отпадает необходимость в предварительном
получении и очистке ферментов. К существенным недостаткам таких биосенсоров
можно отнести низкую селективность определения вследствие того, что клетки
живых организмов фактически являются источником самых разнообразных
ферментов. Помимо этого время отклика биосенсоров на основе тканей и
микроорганизмов может быть достаточно большим, что также уменьшает их
практическую ценность. Тем не менее в последнее время наблюдается
повышенный интерес к разработке конструкций электродов, содержащих не сами
ферменты в очищенном виде, а их первозданные источники - биологические
материалы. Так, было установлено, что тканевые срезы в биосенсорах могут
выполнять функцию источников каталитической активности. Например, создан
биосенсор на аскорбиновую кислоту, состоящий из платинового электрода и
пластины кожуры огурца или тыквы, служащей источником аскорбиноксидазы.
Активность фермента в такой природной матрице достаточна для проведения 50-
80 определений аскорбиновой кислоты в различных объектах. Установлено, что
пластины биоматериала могут храниться без потери активности в течение года
в 50%-ном глицерине.
Аналогичный подход использовали при создании конструкции биосенсора на
допамин - важнейший биогенный амин, участвующий в регуляции деятельности
мозга. В данном биосенсоре ткань плода банана была иммобилизована на
поверхности кислородного электрода. В рассмотренных случаях биоматериалы
создают "естественное окружение" для ферментов, способствующее стабилизации
их активности. Тканевые материалы достаточно долго сохраняют высокую
специфичность, что очень важно для биосенсора, тогда как выделенные
ферменты в тех же условиях быстро разрушаются. Известны биосенсоры, в
которых использован цельный фрагмент ткани печени быка, являющийся
носителем фермента каталазы и иммобилизованный на кислородном электроде.
Ферментативное действие каталазы, проявляющееся в катализе реакции
разложения пероксида водорода, используют в этом случае для создания
соответствующего электрода. Разработан биосенсор на основе кожуры кабачка
или огурца и кислородного электрода для определения L-аскорбиновой кислоты
во фруктовых соках, функционирующий подобно аналогичному типу электрода, уже рассмотренного выше. Тем не менее, несмотря на успехи в развитии
биосенсоров на основе биологических материалов, надежность их
функционирования все еще остается спорной. Еще один пример конструкции
биосенсорного устройства относится к ферментному электроду на основе
микроорганизмов - дрожжей, помещаемых между двумя пористыми мембранами.
Биосенсор на основе иммобилизованных дрожжей и кислородного электрода
позволяет определять этанол и метанол, например в промышленных стоках.
Интерес представляют биосенсоры на основе иммобилизованных на мембране микроорганизмов, служащих элементом так называемого микробного сенсора. В качестве примера таких устройств можно упомянуть амперометрический сенсор на аммиак (в сточных водах) на основе иммобилизованных нитрифицирующих бактерий и кислородного электрода. Такой биосенсор полезен при решении вопросов охраны окружающей среды, и в частности при контроле степени очистки промышленных стоков.
Можно отметить также использование биосенсоров на основе гидролаз - ферментов, являющихся катализаторами гидролитического расщепления субстратов. Эти биосенсоры предназначаются, как правило, для эколого- аналитического контроля остаточных количеств пестицидов класса фосфорорганических соединений, а также для определения некоторых ОВ. Если при гидролизе какого-либо субстрата ферментом класса гидролаз образуется электрохимически активное соединение, то, контролируя содержание последнего, можно контролировать ферментативную реакцию так же, как в предыдущих случаях. Однако в присутствии веществ, являющихся ингибиторами, активность фермента уменьшается, что и обнаруживается по сигналу, регистрируемому электродом. Интересно отметить высокую чувствительность такого определения: эффект изменения активности фермента доступен для измерения уже при действии ультраследовых количеств ингибитора - на уровне пико- и фемтограмм
Проблемы и перспективы развития
Концепция распознавания определяемого вещества с помощью
иммобилизованного биоматериала оказалась плодотворной. В итоге
исследователи приобрели новое средство, позволяющее быстро получить
достоверную информацию о состоянии окружающей среды и здоровья человека.
Некоторые биосенсоры уже получают распространение для индивидуального
использования в домашних аптечках (чаще всего для определения сахара в
крови). Интерес к биосенсорам непрерывно растет. В 1996 году состоялись
четыре крупные международные конференции по биосенсорам.
Если иметь в виду все разнообразие ферментов, присутствующих и
действующих в живом организме и являющихся потенциальными биологическими
преобразователями, то следует отметить, что существующее сегодня число
конструкций биосенсоров может быть увеличено в десятки и даже сотни раз.
Биосенсоры получают распространение в биотехнологии. Хотя здесь и
встречаются трудности, связанные с невысокой термической устойчивостью
предложенных устройств, приводящей к дезактивации биослоя, есть основания
полагать, что данный недостаток будет в скором времени преодолен. Так, полагают, что для увеличения срока службы биосенсоров в обозначенных выше
условиях можно использовать ферменты, выделенные из термофильных бактерий и
одноклеточных водорослей - микроорганизмов, устойчивых к действию высоких
температур. Определенные трудности представляют собой также проблемы
градуировки биосенсоров и надежности их показаний. Для улучшения последнего
показателя, в частности, предлагается использовать мультисенсорную систему, состоящую из ряда биочипов. Для получения определенной "емкости" надежных
данных производится расчет необходимого числа таких датчиков. Однако в
целом так называемые метрологические характеристики биосенсоров вполне
приемлемы. Относительное стандартное отклонение определяемой концентрации
не выше 10-12 %, притом что нижняя граница определяемых содержаний
достигает 10-15 моль/л. Некоторые биосенсоры работают по принципу да-нет, что вполне приемлемо, когда решается вопрос о присутствии ультрамалых
количеств высокотоксичных веществ в объектах окружающей среды. Если
определяемые компоненты находятся в сложной смеси или матрице или же близки
по своим свойствам, то при анализе используют хроматографические методы
разделения. Контроль за разделением осуществляют с помощью системы
детекторов на основе биосенсоров. И здесь получены поразительные
результаты: разделяют и количественно определяют оптические активные
изомеры, различные сахара (лактозу, фруктозу, глюкозу и т.д.), сложные по
структуре биологически активные соединения и т.п.
Вот один из недавних примеров разработки биосенсоров, основанных на использовании природного хеморецептора. Хеморецептор, извлеченный из чувствительных антенн (органелл) голубого морского краба, был прикреплен к ультрамикроэлектроду, измеряющему потенциал. В результате был изготовлен новый тип потенциометрического детектора, чрезвычайно быстро реагирующего на ничтожные изменения состава среды, в которую он погружен. Сам голубой краб очень чувствителен к следам тяжелых металлов и живет только в чистейшей морской воде.
На очереди создание биосенсоров, заменяющих рецепторы живых организмов, что позволит создать "искусственные органы" обоняния и вкуса, а также применить указанные разработки для возможно более точной и информативной диагностики ряда заболеваний. Несомненно, что в ближайшем будущем в этой смежной области биологии и химии следует ожидать новых открытий.
Литература
1. Биосенсоры: основы и приложения / Под ред. Э. Тернера и др. М.: Мир,
1992. 614 с.
2. Будников Г.К., Майстренко В.Н., Муринов Ю.И. Вольтамперометрия с модифицированными и ультрамикроэлектродами. М.: Наука, 1994. 239 с.
3. Будников Г.К., Медянцева Э.П., Бабкина С.С. // Успехи химии. 1991. Т.
60. С. 881.
Скачали данный реферат: Кусков, Лукерья, Гуськов, Suprunov, Kudashov, Валевач.
Последние просмотренные рефераты на тему: дипломы рефераты, конспекты 9 класс, бесплатные шпоры, шпоры по химии.
Категории:
Предыдущая страница реферата | 1 2