Старение на клеточном уровне
| Категория реферата: Рефераты по биологии
| Теги реферата: диплом государственного образца, реферат на тему россия
| Добавил(а) на сайт: Rjabokon'.
Предыдущая страница реферата | 1 2 3 4 5 | Следующая страница реферата
Молекулярные механизмы, обуславливающие старение клетки.
В начале 60-х годов работы Хейфлика были восприняты в штыки. Это было
понятно, так как получалось, что вся шестидесятилетняя работа учёных была
проделана не в том направлении. Хотя после признания сенсационных открытий
Л. Хейфлика и П. Мурхеда больше внимание стало уделяться старению клетки
как одноve из главных факторов старения организма в целом.
На данный момент чётко процесс старения клетки не изучен. Так, существует несколько теорий. Одни считают, что процесс старения связан с
укорочением теломер. Другие считают, что сущность процесса состоит в
увеличении концентраций активных форм кислорода с возрастом, а «лимит
Хейфлика» является всего лишь барьером. Но большинство теорий сходится в
том, что смерть клетки является её запрограммированной функцией.
Естественно, что число факторов и механизмов, вызывающих смерть клетки, велико, но всё же это число конечно. В этом реферате я бы хотел рассмотреть следующие механизмы:
. Индукция белков теплового шока.
. Активные формы кислорода.
. Укорочение теломер.
Эти три фактора на данный момент наиболее изучены. Наиболее изученным является механизм укорочения теломер.
Индукция белков теплового шока.
В любой живой клетке есть белки, ремонтирующие другие белки, если те приобрели неправильную конформацию. Если нормальные клетки на короткое время подвергнуть «тепловому шоку», повышая температуру, они начинают синтезировать в большом количестве белки-ремонтники. Белки-ремонтники получили название белков теплового шока, поскольку их количество резко возрастает в ответ на повышение окружающей температуры, сопровождающееся денатурацией белковых молекул. Подобный эффект вызывает не только высокая температура, но и любые другие воздействия, которые вызывают денатурацию белков клетки, в частности окислительный стресс. Предполагают, что белки теплового шока помогают переводить в раствор и вновь сворачивать денатурированные или неправильно свёрнутые белки.
Механизм этого явления состоит в том, что на денатурирующее воздействие клетка стимулирует тримеризацию (образование комплекса из трёх молекул) особого белка фактора I теплового шока (ФТШ I), который в обычных условиях находится в цитозоле (цитозоль – часть цитоплазмы, занимающая пространство между мембранными органеллами) в своей мономерной форме. Этот белок отправляется в ядро, находит там гены белков теплового шока и активирует их работу.
Оказалось, что степень индукции белков теплового шока и способность мономеров ФТШ I тримеризоваться в ответ на стрессовые воздействия обратно пропорциональны числу делений культуры фибробластов in vitro. Индукция теплового шока и индуцирующая активность ФТШ I в клетках, взятых у старых животных, всегда гораздо ниже, чем в клетках из молодых, а активность (но не количество) ФТШ I падает с возрастом. Эффект старения in vivo обращается при ограничении калорийности питания. Это навело учёных на мысль, что в деле как-то замешаны активные формы кислорода, образование которых зависит от количества окисляемых в организме пищевых продуктов.
Активные формы кислорода.
К активным формам кислорода (АФК) относятся супероксид (O2—), синглетный кислород, H2O2 и радикал гидроксида (OH ). В организме человека
и животных первичной АФК служит супероксид, возникающий при одноэлектронном
восстановлении молекулярного кислорода. Супероксид превращается в H2O2, а
H2O2 в OH в присутствии ионов железа или меди. OH – сильнейший окислитель, способный разрушить практически любое органическое вещество биологического
происхождения.
Одноэлектронное восстановление кислорода в принципе возможно за счёт
окисления всех веществ с окислительно-восстановительным потенциалом ниже
или равным –0,15 В (окислительно-восстановительный потенциал пары
O2/супероксид).
В ходе эволюции в клетке был создан ряд мер, позволяющий свести к минимуму паразитные реакции образования супероксида и не допустить его превращение в очень опасный OH. .Существуют многоуровневые системы защиты от АФК. Например, вещества-антиоксиданты, механизмы, препятствующие накоплению веществ-восстановителей, ферменты, снижающие внутриклеточную концентрацию кислорода и тем самым замедляющие образование супероксида; системы выбраковывающие митохондрии и клетки, в которых образуется в силу тех или иных обстоятельств очень много супероксида, и т.д. У высших животных эти внутриклеточных механизмы дополнены физиологическими надклеточными системами, такими как уменьшение вентиляции лёгких и сужении капилляров при переходе от работы к покою, когда потребность в кислороде резко падает.
И, тем не менее, в среднем 2% кислорода клетка животного потребляет
не за счёт безопасной реакции четырёхэлектронного восстановления кислорода
до воды, а путём энергетически бессмысленной и опасной реакции O2 >O2— . В
результате клетка оказывается не в состоянии полностью защитится от
повреждающего действия АФК. Так, количество окислительных повреждений
ядерной ДНК в клетке человека в среднем оценивается величиной порядка 10
000 повреждений в день, а в клетке крысы, имеющей более высокую скорость
дыхания, -- 100 000 в день. На порядок выше чистота повреждений
митохондриальной ДНК, расположенной в непосредственной близости от
дыхательной цепи – главного генератора супероксида.
На первый взгляд, такую ситуацию можно было бы списать на несовершенство живой системы. Однако известно, что в клетке существует фермент ксантиноксидаза — фермент, который окисляет ксантин молекулярным кислородом. Такой процесс, например, обеспечивает стерильность молока, так как АФК — мощный бактерицид. Однако, как быть с внутриклеточной ксантиноксидазой, обнаруженной в целом ряде тканей? АФК слишком опасны, чтобы доверять им какие либо внутриклеточные функции, кроме одной — функции самоубийства живой системы, будь то митохондрия, клетка или организм.
Не исключено, что во всех этих событиях роковую роль играют
митохондрии. Именно в митохондриях генерируется больше всего супероксида, причём этот процесс может приобретать характер саморазгоняющегося. Чем
больше образуется супероксида, тем больше вероятность повреждения
митохондриальной ДНК. Повреждение митохондриальной ДНК ведёт к нарушению
синтеза белков — переносчиков электронов дыхательной цепи. Торможение
дыхательной цепи приводит к генерации ещё большего количества супероксида.
Таким образом, может возникнуть угроза уничтожения ядерной ДНК и клетки в
целом.
Нарастание продукции АФК с возрастом — твёрдо установленный факт.
Помимо повреждения ДНК этот эффект может отражаться и на белках. Увеличение
окислительной денатурации белков усугубляется тем, что при старении такая
денатурация уже не может полностью компенсироваться индукцией белков
теплового шока.
Теломеры.
Теломерами называют особые концевые районы линейной хромосомной ДНК, состоящие из многократно повторяющихся коротких нуклеотидных последовательностей. В состав теломер входят также многие белки, специфически связывающиеся с теломерными ДНК-повторами. Таким образом, теломеры (так же, как и все другие районы хромосомы эукариот) построены из дезоксинуклеопротеидов, то есть комплексов ДНК с белками.
Существование специальных структур на концах хромосом было
окончательно доказано в 1938 году классиками генетики, лауреатами
Нобелевской премии Барбарой Мак-Клинток и Германом Мёллером. Независимо
друг от друга они обнаружили, что фрагментация хромосом (под действием
рентгеновского облучения) и появление у них дополнительных концов ведут к
хромосомным перестройкам и деградации хромосом. В сохранности оставались
лишь области хромосом, прилегающие к их естественным концам. Лишенные
концевых теломер, хромосомы начинают сливаться с большой частотой, что
ведет к тяжелым генетическим аномалиям. Следовательно, заключили они, естественные концы линейных хромосом защищены специальными структурами. Г.
Мёллер предложил называть их теломерами (от греч. телос — конец и мерос —
часть).
В последующие годы выяснилось, что теломеры не только предотвращают деградацию и слияние хромосом (и тем самым поддерживают целостность генома хозяйской клетки), но и, по-видимому, ответственны за прикрепление хромосом к специальной внутриядерной структуре (своеобразному скелету клеточного ядра), называемой ядерным матриксом (рис. 1,2). Таким образом, теломеры играют важную роль в создании специфической архитектуры и внутренней упорядоченности клеточного ядра. Более того, наличие на концах хромосом специальной теломерной ДНК позволяет решить так называемую проблему концевой недорепликации ДНК.
Теломерная ДНК (рис. 3,4) попала в поле зрения молекулярных биологов сравнительно недавно, когда были разработаны эффективные методы определения последовательности нуклеотидов в нуклеиновых кислотах. Первыми объектами исследования были одноклеточные простейшие (ресничная инфузория тетрахимена, в частности), поскольку из-за особенностей строения ядерного и хромосомного аппарата они содержат несколько десятков тысяч очень мелких хромосом и, следовательно, множество теломер в одной клетке (для сравнения: у высших эукариот на клетку приходится менее ста теломер).
Рекомендуем скачать другие рефераты по теме: проблема реферат, доклади по биологии.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 | Следующая страница реферата