Физическая связь
| Категория реферата: Рефераты по химии
| Теги реферата: шпаргалки по химии, бесплатные тесты
| Добавил(а) на сайт: Есипов.
1 2 3 | Следующая страница реферата
Московский Государственный Технологический Университет "СТАНКИН"
Реферат по химии
"Физическая связь"
Выполнил:
Фридлянд Д.А.
Проверил:
Козлов Г.В.
Содержание
|Введение |3 |
|§1 Ван-дер-ваальсовые взаимодействия |4 |
|Уравнение Ван-дер-Ваальса |4 |
|Ориентационные взаимодействия Ван-дер-Ваальса (эффект |6 |
|Кезома) | |
|Индукционные взаимодействия Ван-дер-Ваальса (эффект Дебая) |8 |
|Дисперсионные взаимодействия Ван-дер-Ваальса (эффект |9 |
|Лондона) | |
|Ван-дер-ваальсово отталкивание (эффект Паули) |12 |
|§2 Водородные связи |13 |
|Выводы |17 |
|Литература |19 |
Введение
Нижеследующий реферат будет посвящен различным видам физической связи
(ван-дер-ваальсовой и водородной) и их связи с физическими и химическими
свойствами веществ. В отличие от химической связи (ковалентная, донорно-
акцепторная, ионная) водородная и ван-дер-ваальсовая связи, как правило, не
на столько сильны. Однако они оказывают значительное влияние на многие
физические свойства веществ (теплота испарения жидкости либо теплота
возгонки кристалла, температуры плавления и кипения). А также на
количественные характеристики некоторых химических реакций: такие как
тепловой эффект и энергия активации (температура активации либо
минимальная для активизации реакции частота излучения) образования и
диссоциации молекулярных комплексов, молекул и сложных ионов. Именно ван-
дер-ваальсовые и водородные взаимодействия являются причиной как коагуляции
коллоидных растворов так и их устойчивости, а также физической основой
абсорбции и адсорбции, что уже сейчас применяется при проектировании
очистных сооружений.
Молекулы, валентно насыщенные в обычном понимании (такие как CO2, H2O,
I2, Ne и др.), взаимодействуют между собой, о чем свидетельствует
конденсация реальных газов (идеальный газ не конденсируется ни при каких
условиях). Силы, действующие между молекулами газа и вызывающие отклонение
газов от идеальности, называют силами Ван-дер-Ваальса, по имени ученого, который впервые учел взаимное притяжение и отталкивание молекул при выводе
уравнения состояния реальных газов.
Как известно, все химические вещества состоят из молекул в свою очередь состоящих из электрически заряженных частиц, электронов и атомных ядер. Вследствие того, что в молекуле положительные и отрицательные заряды разделены и постоянно находятся в относительном движении, в каждый момент времени подавляющее большинство молекул находятся в виде электрических диполей. Взаимодействие возникших вследствие тех или иных причин дипольных моментов молекул и называется связью Ван-дер-Ваальса. В зависимости от происхождения дипольного момента взаимодействующих молекул ван-дер- ваальсового притяжения разделяют на ориентационные, индукционные и дисперсионные. Притяжение между молекулами принимает существенные значения уже на довольно больших расстояниях (~10Е); однако же, взаимодействие Ван- дер-Ваальса включает эффекты не только притяжения, но и отталкивания, эти силы играют в нашей жизни не менее важную роль т.к. не позволяют всем молекулам слипнуться в единый материальный ком, в гигантскую глобулу.
То, что плотности жидкостей и кристаллов имеют вполне конечную
величину, указывает на одновременное существование отталкивания между
молекулами; не будь отталкивания, молекулы при сближении сливались бы в
одно целое и плотность возрастала бы практически не ограниченно. В
конденсированном состоянии (жидкости или кристалле), построенном из
молекул, притяжение сближает частицы до расстояния, на котором силы
притяжения и отталкивания равны по величине. Потенциальная кривая
взаимодействия двух молекул приведена на рис.1; от потенциальной кривой
двухатомной молекулы она отличается лишь количественно: глубина
потенциальной ямы, т.е. энергия взаимодействия, значительно меньше, а
равновесное расстояние s0- больше. Таким образом, различие между
химическими и межмолекулярными (ван-дер-ваальсовыми и водородными) связями
в первую очередь - количественное. Природа же сил в обоих случаях - одна и
та же - электрическая. Расстояние между молекулами в жидкостях и кристаллах
~3-5Е, а энергия взаимодействия ~1-5 кДж/моль для сил Ван-дер-Ваальса, что
в 100 раз меньше энергии химической связи (водородные связи как по
энергии, так и по длинне связи примыкают как к ван-дер-ваальсовым, так и к
химическим связям практически вплотную). Для определения энергии
межмолекулярной связи ( определяют энергию сублимации (либо испарения) ( и
вычитают из нее работу изобарного расширения; (=(-p(Vг-Vж)((-pVг((-RT.
То, что потенциальная кривая взаимодействия двух молекул не отличается
качественно от потенциальной кривой двухатомной молекулы, указывает на
нестрогость (размытость) границы между химическим и межмолекулярным
взаимодействием; межмолекулярная связь имеет характер возмущения
электронного облака одной молекулы электронным облаком другой молекулы, как
ковалентная связь имеет характер возмущения электронного облака одного
радикала (валентно ненасыщенная группа атомов) или атома электронным
облаком другого радикала или атома. При образовании физической
(межмолекулярной) связи энергия системы понижается на величину энергии
возмущения, называемую энергией межмолекулярного взаимодействия; аналогично
тому, как энергия системы понижается на величину энергии возмущения, называемую тепловым эффектом реакции, при образовании химической
(ковалентная или донорно-акцепторная) связи. Именно на разрыв физических
связей тратится теплота парообразования или сублимации, совершение работы
расширения системы занимает в теплоте парообразования ничтожно малую долю.
Однако между физическими и химическими связями всеже есть одно
принципиальное отличие. Это принципиальное отличие - насыщаемость
химических связей в противовес абсолютной ненасыщаемости ван-дер-ваальсовых
и ионных (по этому их часто тоже относят к физическим связям)
взаимодействий. Водородные связи в отличие от ван-дер-ваальсовых (и ионных)
взаимодействуют не со всеми молекулами конденсированной фазы (кристалл, расплав), а лишь с ближайшими соседями; однако в отличие от химических
связей число ближайших соседей ограничено нестрого и может слегка
варьироваться в пределах одной фазы, поэтому как правило водородные связи
считают ненасыщаемыми и относят к физическим, а не к химическим связям.
Однако водородные связи все таки обладают насыщаемостью (хотя и нечетко
выраженной); поэтому в медицинской литературе при рассмотрении химии высоко
организованных органических молекул и молекулярных комплексов (учитывая, что водородные связи примыкают к химическим также по значениям длинны и
энергии связи) часто рассматривают наравне с химическими связями.
§1 Ван-дер-ваальсовые взаимодействия
Уравнение Ван-дер-Ваальса
В 1873 г. Ван-дер-Ваальс на основе молекулярной модели несжимаемых
шаров диаметра D, притягивающих друг друга и притягиваемых друг другом, вывел свое удивительно простое уравнение. В реальном газе в результате
молекулярного притяжения увеличивается кинетическое давление по сравнению с
давлением в идеальном газе. Из самых общих соображений молекулярное
притяжение пропорционально числу как притягивающих, так и притягиваемых
молекул; ?p ~ N2. В результате молекулярного отталкивания свободный объем в
реальном газе меньше, чем объем сосуда занимаемого газом. Запрещенный объем
вокруг каждой молекулы, в который не может попасть центр другой молекулы из-
за взаимного отталкивания, Ван-дер-Ваальс оценил как объем сферы [pic], где
D - расстояние между центрами двух несжимаемых шаров диаметра D.
Следовательно, полный запрещенный объем моля газа будет равен [pic], т.е.
равен учетверенному объему Na несжимаемых молекул.
Уравнение Клапейрона для идеального газа - pV=NakT.
Уравнение Ван-дер-Ваальса представляет собой уравнение Клапейрона, в которое введены перечисленные выше поправки на возросшее вследствие межмолекулярного взаимодействия кинетическое давление и уменьшенный реальный свободный объем:
[pic] или [pic] , где a – постоянная, b(4V0 (V0 – объем молекулы).
Если в качестве переменных P, V и T использовать их относительные значения
Pc=P/Pk , Tc=T/Tk , Vc=V/Vk (где Pk, Tk, Vk – критические значения), то
закон Ван-дер-Ваальса принимает вид универсального закона соответственных
состояний:
Pc=F(Vc, Tc) — универсальная функция, [pic] — универсальная постоянная.
Следствие из этого закона может быть сформулировано следующим образом:
все вещества кипят при одних и тех же относительных давлениях и
температурах. Или еще: относительные объемы всех веществ одинаковы при
одних и тех же относительных давлениях и температурах. Уравнение Ван-дер-
Ваальса можно записать и в другом виде:
[pic], т.е. представить в виде разложения потенциала притяжения по обратным степеням температуры, в котором учтен только первый член. Оправданием такого приближения служит предположение Ван-дер-Ваальса о дальнодействующем характере сил притяжения. В случае дальнодействия можно считать, что при переходе от одной конфигурации молекул к другой их потенциальная энергия не изменится, т.е. a=const вследствие того, что они находятся в среднем поле соседей с постоянной плотностью энергии.
Математическое и экспериментальное исследования этого уравнения
показали, что поправки Ван-дер-Ваальса обладают глубоким физическим
смыслом. Они качественно описывают не только изменения свойств системы, определяющих фазовый переход газ-жидкость, но и форму критической области.
Кроме того, если силы притяжения нельзя рассматривать постоянными из-за
близкодействия, то уравнение Ван-дер-Ваальса допускает следующее
приближение с учетом члена 1/T2.
Ван-дер-Ваальс в 1873 году одним из первых указал на наличие нехимического межмолекулярного взаимодействия в аморфных состояниях вещества и разделил это взаимодействие на дальнодействующее притяжение и близкодействующее отталкивание. При этом, он предложил до сих пор самую простую, но в тоже время достаточно точную в широком интервале температур и давлений, математическую модель для учета вышеперечисленных сил при расчете состояний реального газа. В связи с вышеуказанными обстоятельствами дальнодействующие силы межмолекулярного притяжения и близкодействующие силы межмолекулярного отталкивания назвали силами Ван-дер-Ваальса.
В табл.1 приведены величины (-RT при температурах конденсации
некоторых веществ.
|Вещество |Ar |Kr |Xe |CH4 |C2H6|C3H8|C5H1|H2O |C2H5OH|
| | | | | | | |2 | | |
|Температура |87,2|119,|165,|111,|184,|231,|309,|373,|351,52|
|конденсации, K |5 |75 |05 |57 |52 |09 |22 |15 | |
|(-RT, Дж/моль |6883|8033|1460|7268|1309|1686|2322|3756|35660 |
| | | |0 | |0 |0 |0 |0 | |
Рекомендуем скачать другие рефераты по теме: ответы 4 класс, бесплатные шпаргалки, шпаргалки по русскому.
Категории:
1 2 3 | Следующая страница реферата