Полимеры
| Категория реферата: Рефераты по химии
| Теги реферата: реферат диагностика, продукт реферат
| Добавил(а) на сайт: Тарасов.
Предыдущая страница реферата | 1 2 3 4 5 6 7 | Следующая страница реферата
ПЛАСТМАССЫ
Пластмассы (пластики)—материалы на основе полимеров, находящиеся в период формования изделий в вязкотекучем или высокоэластическом состоянии, а при эксплуатации—в стеклообразном или кристаллическом. В пластмассе наряду с полимером могут содержаться наполнители, причем в термопластичные их вводят реже и в меньших количествах, чем в термореактивные. Поэтому понятия термопластичный полимер, «термопласт», «пластик», обычно совпадают.
Основой так называемых «ненаполненных» термопластов являются полимеры, структура которых почти полностью формируется при их синтезе в условиях специализированного химического производства. Возможности регулирования их свойств на стадии изготовления изделий состоят в несущественных изменениях структуры, путем отжига или ориентации, стабилизации и пластификации с помощью модифицирующих добавок, изменяющих их свойства. Такими добавками к полимерам являются:
. стабилизаторы, повышающие стойкость к термоокислительным процессам, воздействию излучения, микроорганизмов и т. п.;
. пластификаторы и эластификаторы, повышающие текучесть в вязкотекучем состоянии и эластичность в стеклообразном
(ударопрочность);
. легирующие полимеры, изменяющие степень кристалличности, структуру и свойства матрицы;
. пигменты для окрашивания.
Один из основных признаков термопластов: наличие двух твердых состояний — стеклообразного и высокоэластического — и жидкого—вязкотекучего. Оба перехода—плавление и стеклование являются плавными, нерезкими, и механические свойства почти непрерывно и обратимо изменяются при изменении температуры.
Отмеченная выше особенность химической структуры термопластов определяет их свойства—гибкость цепей и возможность смены конформаций, что и объясняет существование в них нового высокоэластического состояния, характерного для широкого диапазона температур.
Первым термопластом, нашедшим широкое применение, был целлулоид—искусственный полимер, полученный путем переработки природного—целлюлозы. Он сыграл большую роль в технике, особенно в кинематографе, но вследствие исключительной пожароопасности (по составу целлюлоза очень близка к бездымному пороху) уже в середине XX в. ее производство упало почти до нуля.
Развитие электроники, телефонной связи, радио настоятельно требовало
создания новых электроизоляционных материалов с хорошими конструкционными и
технологическими свойствами. Так появились искусственные полимеры, изготовленные на основе той же целлюлозы, названные по первым буквам
областей применения этролами. В настоящее время лишь 2 ... 3% мирового
производства полимеров составляют целлюлозные пластики, тогда как примерно
75%—синтетические термопласты, причем 90% из них приходится на долю только
трех: полистирола, полиэтилена, поливинилхлорида.
Полистирол—неполярный полимер, широко применяющийся в электротехнике, сохраняющий прочность в диапазоне 210 ... ... 350 К. Благодаря введению различных добавок приобретает специальные свойства: ударопрочность, повышенную теплостойкость, антистатические свойства, атмосферостойкость, пенистость. Недостатки полистирола—хрупкость, низкая устойчивость к действию органических растворителей (толуол, бензол, четыреххлористый углерод легко растворяют полистирол; в парах бензина, скипидара, спирта он набухает).
Полистирол вспенивающийся широко используется как
теплозвукоизоляционный строительный материал. В радиоэлектронике он находит
применение для герметизации изделий, когда надо обеспечить минимальные
механические напряжения, создать временную изоляцию от воздействия тепла, излучаемого другими элементами, или низких температур и устранить их
влияние на электрические свойства (tg6, е), следовательно, — в бортовой и
СВЧ-аппаратуре.
Полиэтилен—полимер с чрезвычайно широким набором свойств и
использующийся в больших объемах, вследствие чего его считают королем
пластмасс. Регулируя степень кристаллизации, условия синтеза и добавки, прочность полиэтилена можно варьировать в пределах 8 ... ]5 ГПа, а
относительное удлинение 500 ... 100%. Полиэтилен обладает исключительно
высокой стойкостью против химической деструкции: даже за 10... 12 лет
эксплуатации прочность его снижается лишь на ј. Благодаря химической
чистоте и неполярному строению полиэтилен обладает высокими
диэлектрическими свойствами: его удельное сопротивление 1014 ... 1016
Ом*см. tg [pic]=0,0005. Епр==30 МВ/м. Они в сочетании с высокими
механическими и химическими свойствами обусловили широкое применение
полиэтилена в электротехнике, особенно для изоляции проводов и кабелей.
Помимо полиэтилена общего назначения выпускаются его многие специальные модификации, среди которых: антистатический, с повышенной адгезионной способностью, светостабилизированный, самозатухающий, ингибитированный (для защиты от коррозии), электропроводящий (для экранирования).
Одним из наиболее прогрессивных методов обработки полиэтилена является радиационное сшивание, происходящее под действием пучков ускоренных электронов. Такое воздействие приводит к существенному увеличению прочности на растяжение и модуля упругости, твердости, термостойкости и возникновению эффектов памяти и термоусаживания. Эти эффекты находят все более широкое применение в технологии. Изделие, например трубку или пакет, облучают электронами, раздувают горячим воздухом при 423 К- Затем трубку насаживают на штуцер или в пакет, упаковывают продукцию. После этого достаточно небольшого нагрева, и полиэтилен, «вспомнив» первоначальную форму, дает большую усадку, в результате которой образуется прочное надежное соединение трубка—штуцер, а пакет плотно облегает продукцию. Достоинство радиационной обработки состоит в том, что она не требует больших затрат энергии и не загрязняет материал. Она применяется в кабельной промышленности и при изготовлении различных узлов РЭА.
Главный недостаток полиэтилена—сравнительно низкая нагревостойкость.
Фторопласт (политетрафторэтилен—ПТФЭ)—один из самых термостойких и
холодостойких полимеров, сохраняет механическую прочность в интервале 3 ...
600 К. Плотность — 2,2 ... 2,5 г/см3, относительное удлинение 250 ... 500%, температура разложения не менее 673 К; ТКЛР при температуре 293 К — 2,5*10-
5 К-1; при Т==383 К — 1*10-4 К-1. Удельное сопротивление (1038 ... 1020
Ом*см) мало зависит от влажности и температуры. Так, при Трабмах (573 К)
оно снижается лишь в 100 ... 1000 раз; tg[pic] фторопласта равен 0,0002,
Јnp=40 ... 80 МВ/м. Исключительно высока его химическая стойкость, в том
числе длительная к воздействию морского тумана, солнечной радиации, плесневых грибков. По отношению к большинству неорганических и органических
реагентов он настолько пассивен, что методы испытаний на стойкость в этих
средах отсутствуют. Фторопласт обладает также высокой радиационной
стойкостью и применяется для изоляции проводов на атомных электростанциях.
Такие провода можно использовать и в качестве нагревателей, погруженных
непосредственно в растворы кислот и щелочей. Они не боятся попадания масел, керосина, гидравлических жидкостей при повышенных температурах и широко
применяются для изоляции бортовых авиационных кабелей. Обладают они
преимуществом и при эксплуатации в разреженной атмосфере, где условия
теплоотвода ухудшены. У фторопласта незначительна зависимость
диэлектрической проницаемости от температуры, поэтому он фазостабилен — не
изменяет электрическую длину в широком диапазоне температур и частот. Это
позволяет использовать его в РЭА с фазово-импульсной модуляцией, РЛС и
измерительных фазочувствительных системах. Негорючесть фторопласта
характеризуется тем, что он способен загораться только в чистом кислороде, а это резко отличает его, например, от полиэтилена; теплота сгорания
невелика—в 10 раз меньшая, чем полиэтилена; плавления при горении нет, фторопласт в пламени лишь обугливается; при горении или тлении образуется
немного дыма (но дым содержит ядовитый фторфосген, поэтому при температуре
выше 773 К фторопласт опасен); фторопласт горит в открытом пламени, но
после его удаления горение прекращается, т. е. он неспособен распространять
горение. При нагреве в вакууме фторопласт не выделяет газообразных
продуктов, и его можно использовать как подложки тонкопленочных ГИС. Эти
качества свидетельствуют о том, насколько незаурядным материалом является
фторопласт, а также и о том, чего в будущем можно ожидать от полимеров.
У фторопласта есть недостатки, которые вполне естественно продолжают его достоинства.
1. Вследствие химической пассивности он также и адгезионно инертен, т.е. трудно поддается склеиванию. Однако способы преодоления этой инертности уже найдены. Это либо обработка в расплаве окислителей при Т>370 К, либо в плазме тлеющего разряда в кислороде. Благодаря этому выпускаются фольгированные фторопластовые пленки и пленки с односторонним липким слоем.
2. В отличие от типичных термопластов фторопласт при повышении температуры не переходит в вязкотекучее состояние и его нельзя перерабатывать в экструдерах, так как вязкость его при 626 К
(350°С) все еще высока—около 1010 Па-с. Поэтому пленку готовят значительно более дорогим методом строжки на прецизионных токарных станках.
3. Фторопласт обладает ползучестью и плохо работает под нагрузкой.
Механические свойства его могут быть улучшены путем радиационного модифицирования и армирования стекловолокном.
Рекомендуем скачать другие рефераты по теме: культурология, сочинения по литературе, характеристика реферата.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6 7 | Следующая страница реферата