Регенерация азотной и серной кислоты
| Категория реферата: Рефераты по химии
| Теги реферата: решебник по химии, изложение 9
| Добавил(а) на сайт: Sozont.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата
В Казани имеется ряд учебных заведений, готовящих производственные кадры. Инженерные кадры готовятся в КГТУ.
Однако, учитывая экологическую ситуацию, в том числе повышенную фоновую концентрацию вредных веществ в атмосфере, строительство нового химического предприятия на территории республики допустимо лишь при совершенствовании установок для обезвреживания отходов производства и сведения этих отходов к минимальному количеству.
Проектом предусмотрена очистка отходящих газов базового производства с целью охраны окружающей среды.
2. Расчетно-технологическая часть
2.1. Описание технологической схемы
Процесс разделения отработанных кислотных смесей и концентрирования слабой HNO3 ведут в колонне концентрирования ГБХ (9). По трубопроводу 6.0. тройная кислотная смесь поступает в хранилище отработанных смесей (2).
Из хранилища отработанные кислоты насосом (27) подаются в напорный бак
(5). В напорных баках поддерживается постоянный уровень кислот, также они
имеют переливную линию, по которой избыток кислот отводится обратно в
хранилища соответствующих кислот. Из напорного бака отработанные кислоты
через ротаметр (8) поступают в подогреватель (7), где подогреваются до t=80-
100 ОС. В целях уменьшения количества пара, вводимого в колонну, подогрев в
подогревателе ведется глухим паром, поступающим по трубопроводу 3. Из
подогревателя отработанная тройная смесь поступает на 6-9 царги (считая
сверху) колонны ГБХ, а слабая HNO3 (48-50%) по трубопроводу 6.3 поступает в
хранилище слабой HNO3 (2). Из хранилища (1) слабая HNO3 насосом (26)
подается на 10 царгу колонны ГБХ (9). Техническая H2SO4 (91-92%) из
отделения концентрирования слабой H2SO4 перекачивается в хранилище (3)
концентрированной H2SO4 и отсюда насосом (28) подается в напорный бак (6), из которого с t=(20-30 ОС) поступает на 4-6 царги колонны (9). Все три
кислоты подаются в колонну ГБХ одновременно. Также одновременно с подачей
кислот для отгонки HNO3 и окислов азота из смеси кислот и поддержания
температурного режима процесса, в днище колонны (9) подают нагретый водяной
пар по трубопроводу 2.3 с температурой равной 250ОС абсолютное давление
нагретого пара на трубопроводе 1,5 атм. Пар в колонну подается с таким
расчетом, чтобы содержание HNO3 и окислов азота в разбавленной H2SO4, вытекающей из колонны не превышало 0,03%.
Испарение HNO3 из отработанных смесей кислот происходит за счет H2SO4, которая подсоединяет к себе воду, понижая тем самым парциальное давление
водяных паров в смеси. Испарение HNO3 происходит в средней части колонны, состоящей из 11-13 царг HNO3, освобожденная от воды, но с большим
содержанием окислов азота в парообразном виде поднимается в верхние царги
колонны №6-9, где осушается H2SO4, стекающей вниз. Барботируя через слой
H2SO4, пары HNO3 проходят царги 3-5, где освобождаются от брызг H2SO4.
Освобожденные от влаги пары HNO3 поступают в верхние две царги колонны –
дефлегматор, где происходит отдувка окислов азота.
После прохождения колонны пары HNO3 с t(85-95 ОС) из крышки колонны
(9) поступают в конденсатор (10), в котором за счет охлаждения до t=30-40
ОС происходит конденсация HNO3 из парообразного состояния в жидкое.
Сконденсировавшись, охлажденная крепкая HNO3 стекает в общий коллектор
конденсатора (10) и так как она содержит большое количество окислов азота, то обратно возвращается в дефлегматор колонны ГБХ (9), где, встречаясь с
горячими газами, идущими с четвертой царги колонны, нагревается до t=85 ОС.
Освобожденная от окислов азота крепкая 96-98% HNO3 поступает в холодильник
(11) и охлажденная до t=30-40 ОС стекает в сборник концентрированной
азотной кислоты (12), откуда направляется на склад и к потребителю.
Серная кислота, постепенно насыщаясь водой, стекает по царгам вниз.
H2SO4, контактируя с нитрозными газами от разложившейся HNO3 образует
нитрозилсерную кислоту. С 20 по 22 царги (в зоне гидролиза) при температуре
H2SO4 150-160 ОС происходит гидролиз нитрозилсерной кислоты.
Слабая 68-70% серная кислота с долей оксидов не более 0,003%, получаемая в процессе гидролиза из 22 царги колонны с t=160-170 ОС, перекачивается в отделение концентрирования серной кислоты.
Дистилляция HNO3 из отработанных кислот и ее концентрирование сопровождается выделением нитрозных газов. Это приводит не только к значительным потерям HNO3, но и к загрязнению окружающей среды. Поэтому после конденсатора (10) несконденсировавшиесяя пары HNO3 направляются вентилятором (24) в поглотительные башни (20-22), орошаемые кислотами различных концентраций.
У каждого абсорбера установлены циркуляционные насосы (31), которые из нижней части каждого абсорбера через холодильники (23) подают кислоту на орошение, причем концентрация орошающей кислоты последовательно увеличивается от колонны (22) к (20). Вода для орошения абсорбционной системы подается в последний по ходу абсорбер.
Охлаждение циркулирующей кислоты необходимо потому, что при взаимодействии ее в башне с окислами азота она нагревается, а поглощаются окислы азота тем лучше, чем холоднее кислота.
Температура поглощающей кислоты 25-35 ОС.
Пары HNO3 и окислы азота входят в абсорбер снизу, а орошающие кислоты сверху, то есть движутся противотоками. Орошающая кислота, контактируя на поверхности насадки с нитрозными газами, стекает вниз, охлаждая окислы азота и поглощая HNO3. Циркуляция продолжается до тех пор, пока вода, поглощая окислы азота и пара, не превратится в слабую 48-50% HNO3, поле чего она выводится из цикла, а в цикл накачивают свежую воду. Слабая HNO3 после абсорбера направляется в холодильник слабой HNO3, где охлаждается до t=35 ОС, затем поступает в сборник (25) и насосом (34) перекачивается в хранилище (2) концентрирования HNO3.
В результате водной абсорбции содержание окислов азота в газах снижается до 0,1-0,3%. Для окончательной доочистки газы вентилятором (28) направляются в абсорбер (22), орошаемый крепкой H2SO4, поступающей по трубопроводу 6.1. После этого абсорбера газы с содержанием NOx 0,01-0,03% выбрасываются в атмосферу, а получаемая при этом H2SO4 насосом перекачивается на склад.
Концентрирование отработанной 70% H2SO4 осуществляется в вихревой
ферросилидовой колонне (17), путем непосредственного соприкосновения
горячих топочных газов и кислоты. Горячие газы, нагретые в топке (16) до
t=800-900 ОС подаются на первую по ходу газового потока ступень колонны.
Воздух в топку нагнетается воздуходувкой (32) а природный газ в топку
подается по трубопроводу 5,7. Отработанная 70% серная кислота с
температурой 150-170 ОС из колонны ГБХ отделения денитрации насосом (29)
через промежуточную емкость (14) подается на 5 ступень вихревой колонны.
Контактирование горячих газов и кислоты в колонне осуществляется в противоточном режиме. Топочные газы, поступающие на первую ступень, поднимаясь вверх, взаимодействуют в вихревом потоке с H2SO4 и десорбируют из нее воду. H2SO4 перетекает со ступени на ступень вниз, укрепляется и выходит из первой ступени контакта фаз в виде продукционной 91-92% H2SO4 в холодильник (19). Из холодильника H2SO4 насосом перекачивается в отделение денитрации в хранилище серной кислоты (3).
Горячие газы по мере движения в колонне вверх отдают тепло и насыщаются парами воды. Температура отходящих газов после верхней брызгоуловительной ступени составляет 110-130 ОС.
Далее отходящие газы охлаждаются до t=60-70 ОС в эжектирующем
устройстве (17) колонны. Затем отходящие газы с содержанием кислых газов
(0,1-0,2 г/м3 ) через трубу выбросов (30) выбрасываются в атмосферу.
Концентрирование H2SO4 на ступенях вихревой колонны осуществляется в
высокотурболизированном вихревом восходящем жидкостном потоке, что
позволяет интенсифицировать теплообменные процессы и повысить надежность
сепарации фаз при повышенных скоростях газа, предотвратить перегрев и
разложение серной кислоты до сернистого ангидрида (рис. 2.1)
2.2 Принцип работы колонны концентрирования H2SO4
Работа основана на следующих принципах:
1. Применение прямоточного взаимодействия газовой и жидкой фаз в зоне контакта при сохранении противоточного движения потока по аппарату в целом.
2. Использование вихревого движения газожидкостного потока в зоне контакта фаз, обеспечивающего максимальную турбулизацию потока, обновление метафазной поверхности, широкий диапазон устойчивости работы контактных ступеней, а также эффективную сепарацию жидкости в поле центробежных сил.
3. Применение восходящего движения фаз в зоне контакта, обеспечивающего максимальный диаметр многоступенчатых аппаратов.
Принцип прямоточного движения газовой и жидкой фаз осуществляется в вихревом контактном устройстве (рис. 2.2.), состоящем из тарелки 3, на которую установлен завихритель 5, и контактного патрубка 4.
Завихритель газового потока расположен внутри контактного патрубка и
изготовлен в виде цилиндра, имеющего 8 тангенциально расположенных лопаток
6, образующих между собой тангенциальные щели для прохода газа.
Рекомендуем скачать другие рефераты по теме: дороги реферат, реферат на тему общество, шпаргалки по математике.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата