Способы получения радионуклидов для ядерной медицины
| Категория реферата: Рефераты по химии
| Теги реферата: контрольная работа класс, характер реферат
| Добавил(а) на сайт: Shitov.
Предыдущая страница реферата | 1 2 3 4 5 6 | Следующая страница реферата
Коллективная эффективная доза и возможный риск отдаленных последствий.
|Вид обследования |Доза, чел-Зв./год. |Возможное число |
| | |дополнительных смертей,|
| | |случай/год. |
|Рентгенография |1,03*105 |1700 |
|Рентгеноскопия |2,12*105 |3500 |
|Флюрография |0,68*105 |1120 |
|РФП |0,09*105 |132 |
|Всего |3,92*105 |6452 |
-2-
Способы получения радионуклидов для ядерной медицины.
Основные источники производства радионуклидов для ядерной медицины
следующие: ядерные реакторы, ускорители заряженных частиц, как правило, циклотроны и радионуклидные генераторы (как вторичный источник). В мировом
объеме производства радионуклидов громадная его часть -–на ускорителях
заряженных частиц, которые в большинстве своем являются циклотронами
различных типов и уровней. Этот факт обычно связывают с большим количеством
исследовательских их доступностью в самые первые годы развития ядерной
медицины на рубеже 40-х и 50-х годов, а также с дешевизной производства на
них большинства радионуклидов. К середине 80-годов ежегодная наработка
радионуклидов только для ядерной медицины на реакторах всего мира достигла
в стоимостном выражении 500 млн. долларов.[Many R. S. Research reactor
production of radioisotopes for medical use. Radiopharm. Labell. Comp.,
1984, Proc. Ser., IAEA,Vienna, 1985, pp. 3-21. IAEA-CN-45-10.] Однако за
последние два десятилетия обнаруживается существенный рост в использовании
ускорителей заряженных частиц для указанных целей, который обьясняется
более приемлемыми ядерно-физическими характеристиками получаемых с их
помощью нейтронодефицитных радионуклидов[10]
-3-
Реакторные радионуклиды.
Первые 20-25 лет производство радионуклидов было сконцентрировано
вокруг крупных реакторных установок. наиболее часто при облучении в
реакторах использовали потоки тепловых нейтронов с интенсивностью несколько
единиц на 1013 н/см2*с и реже – чуть более 1015 н/см2*с, а также
инициируемые этими нейтронами реакции радиационного захвата нейтронов
(n,(). Выходы этой реакции, как правило, уменьшаются с увеличением энергии
нейтронов. Вот почему облучение стартовых материалов (мишеней), а это чаще
всего термически и радиационно-стойкие материалы, например, металлы, простые вещества, термостойкие окислы и соли, содержащие стартовый нуклид в
природной или изотопно-обогащенной форме, осуществляют в каналах
производственных или исследовательских реакторов с преобладанием тепловой
компоненты нейтронов. Еще одним типом реакции, используемым для масштабного
производства радионуклидов для медицины, является реакция деления (n,f).
Основные радионуклиды, образующиеся в результате деления 235 U под
действием нейтронов и применяемые в медицине 137Cs, 131I,90Sr и 99Мо.
-4-
Генераторные системы радионуклидов.
В тех случаях, когда пользователи находятся вдали от
исследовательских ядерных и ускорителей заряженных частиц и местах, куда
затруднена регулярная доставка РФП, тогда прибегают к использованию
радионуклидных генераторов. Кроме того, значительные потери короткоживущих
радионуклидов становится неизбежными вследствие их распада во время
транспортировки. В этой связи давно стали привлекать внимание системы двух
генетически связанных между собой радионуклидов, когда один из них – более
короткоживущий (дочерний) постоянно образуется (генерируется) в результате
распада другого (материнского), имеющего больший период полураспада, а сам
при распаде превращается в стабильный нуклид. При этом короткоживущий
нуклид, являющийся изотопом другого по сравнению с материнским элементом, может быть быстро и многократно извлечен из небольшого устройства-
генератора, например, посредством пропускания жидкости (элюата)
определенного состава через это устройство. Представляющее собой в
большинстве случаев колонку, заполненную сорбентом и оборудованную
фильтром, предотвращающем его вымывание. Полученный раствор (элюат), как
правило, стерилен, не содержит материнского нуклида и имеет форму, пригодную для непосредственного применения в клинике. Такой генератор
обеспечен защитным свинцовым кожухом и системой коммуникаций. Он прост и
безопасен в эксплуатации в условиях больницы или клиники. Активность
дочернего нуклида при элюировании из генератора определяется общими
закономерностями, обусловленными кинетикой накопления и распада нуклидов.
Началом истории применения генераторных систем в медицине принято считать
начало20-х годов нашего века, когда G.Faila предложил использовать
генератор 222Rn (3,8сут.) на основе природной пары радионуклидов
226Ra—222Rn.
Позднее поиски подобных систем проводили в BNL, США, среди
искусственных радионуклидов и первой в начале 50-х годов была пара
132Te—132I , которая послужила затем прототипом целой серии генераторных
систем и, в частности, поистине золотой находки этой лаборатории была пара
99Mo—99mTc, на основе которой в конце 50-х был сконструирован генератор
99mTc , играющий и сегодня ведущую роль в ядерной медицине . Теоретически
таких пар существует очень много. Несколько факторов предопределяют выбор
идеальной пары для использования в качестве генератора в медицинской
практике. Они связаны с получением материнского радионуклида необходимого
качества и количества по приемлемой цене, периодом полураспада, а также
некоторыми техническими характеристиками самого генератора, а именно:
воспроизводимостью высокого выхода дочернего радионуклида в течение периода
эксплуатации, сохранением профиля кривой элюирования радионуклида, радиационной стойкостью сорбента и жизнеспособностью самого генератора. В
своё время были опробованы и регулярно используются в клинической практике
следующие пары:28Mg—28Al,68Ge-68Ga, 87Y—87mSr, 90Sr—90Y, 99Mo—99mTc,
113Sn—113mIn, 132Te—132I, и др. Ядерный реактор является главным источником
большинства радионуклидов, используемых в качестве материнских для
приготовления генераторов. Стоимость производства здесь ниже, чем на
циклотроне.
При работе с генераторами в клиниках используют специальные наборы нерадиоактивных реагентов, которые содержат химические вещества в стерильном виде. Методы приготовления РФП на основе наборов реагентов просты и в большинстве случаев сводятся к добавлению элюата из генератора, содержащего, например 99mТс, во флакон со смесью реагентов, предназначенный для проведения определенного диагностического теста. После чего полученный раствор вводят пациенту и проводят сцинтиграфию скелета. Разработка новых наборов реагентов к генераторам короткоживущих нуклидов является одной из развивающихся областей радиофармацевтики.
-5-
Генераторы
Началом истории применения генераторных систем в медицине принято считать 20-е годы нашего века. Всего было предложено около 118 таких систем, но только немногие из них применяются в клинической практике.
Радиофармацевтическая промышленность практически всех промышленно развитых стран использует молибден-99 для изготовления радионуклидных генераторов 99mTc, который применяется почти в 80% всех диагностических процедур ядерной медицины. В конце 80-х годов мировой объем выручки от продажи этого генератора составил 100 млн. $ /год. Технология производства генераторов 99mTc развивается сразу по 3 направлениям : хроматография на колонке. Сублимация и жидкостная экстракция.
Приведем некоторые радионуклиды применяемые для генераторных систем.
Таблица 2
Радионуклиды для генераторных систем.
|Материнский |Период |Дочерний |Период |Энергия |
|нуклид |полураспада. |нуклид. |полураспада.|излучения, |
| | | | |кэВ |
|Mg-28 |20.9 ч. |Al-28 |2,2 мин. |1780 |
|S-38 |2,8 ч. |Cl-38 |37,2 мин. |2170 |
|Ca-47 |4,5 сут. |Sc-47 |3,3 сут. |159 |
|Fe-52 |8,3 ч. |Mn-52m |21,1 мин. |511 |
|Zn-62 |9,3 ч. |Cu-62 |9,7 мин. |511 |
|Ge-68 |271сут. |Ga-68 |68,1 мин. |511 |
|Se-72 |8,4 сут. |As-72 |26 ч. |511 |
|Br-77 |57 ч. |Se-77m |17,5 с. |162 |
|Rb-81 |4,6 ч. |Kr-81m |13 с. |190 |
|Sr-82 |83 сут. |Kr-83m |1,86 ч. |9 |
|Y-87 |26 сут. |Rb-82 |1,25 мин. |511 |
|Zr-89 |3,3 сут. |Sr-87m |2,8 ч. |388 |
|Mo-90 |78,5 ч. |Y-89m |16,1 с. |909 |
|Mo-99 |5,7 ч. |Nb-90m |18,8 с. |122 |
|Pd-103 |2,75 сут. |Tc-99m |6,0 ч. |140 |
|Cd-109 |17 сут. |Rh-103m |56 мин. |40 |
|In-111 |462 сут. |Ag-109m |39,6 с. |88 |
|Sn-113 |2,83 сут. |Cd-111m |48,6 мин. |151 |
|Cd-115 |115 сут. |In-113m |1,66 ч. |392 |
|Te-118 |63,5 ч. |In-115m |4,49 ч. |336 |
|Xe-122 |6,0 сут. |Sb-118 |3,6 мин. |511 |
|Te-132 |20,1 ч. |I-122 |3,6 мин. |511 |
|Ba-128 |3,26 сут. |I-132 |2,3 ч. |668 |
|Cs-137 |2,43 сут. |Cs-128 |3,9 мин. |511 |
|Ce-134 |30 лет. |Ba-137m |2,55 мин. |662 |
|Nd-140 |73 ч. |La-134 |6,5 мин. |511 |
|Ce-144 |3,4 сут. |Pr-140 |3,4 мин. |511 |
|Hf-172 |285 сут. |Pr-144 |17,3 мин. |696 |
|W-178 |1,87 года |Lu-172 |6,7 сут. |901 |
|Ta-183 |21,7 сут. |Ta-178 |9,3 мин. |93 |
|Os-191 |5,1 сут. |W-183m |55,2 с. |108 |
|Hg-195m |15,4 сут. |Au-195m |4,9 с. |129 |
|Hg-197m |41,6 ч. |Au-197m |30,6 с. |261 |
|Rn-211 |23,8 сут. |At-211 |7,8 с. |130 |
|Pb-212 |14,6 ч. |Bi-212 |7,2 ч. |569 |
Напомним, что лишь немногие из этих систем используются в медицинской практике.
-6-
Генератор Y- 90
ЭКСТРАКЦИОННЫЙ ГЕНЕРАТОР 90Y
Рекомендуем скачать другие рефераты по теме: 1 класс контрольная работа, промышленность реферат, дипломная работа методика.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6 | Следующая страница реферата