Радиационно-опасные объекты
| Категория реферата: Рефераты по экологии
| Теги реферата: реферати українською, реферат бесплатно без регистрации
| Добавил(а) на сайт: Энтин.
Предыдущая страница реферата | 1 2 3 4 | Следующая страница реферата
3) изучение депонирующей функции печени;
На данный момент исследования еще не завершены, но у местных жителей были обнаружены учащения случаев заболевания раком и другими заболеваниями. Все сказанное выше доказывает, что ядерное оружие является чуть ли не наиболее опасным радиационно опасным обьектом. При аварии последствия ядерного взрыва будут развиваться по принципу описанному выше, кроме того, в случае нахождения атомной бомбы (например склада по хранению оружия) в населенном пункте, количество жертв будет в тысячи, десятки тысяч раз больше. Основным источником радиоактивного заражения при ядерных взрывах являются осколки деления ядерного горючего, в качестве которого используются уран-233, уран-235 и плутоний-239.Кроме того, в комбинированных боеприпасах используется уран-238. Другим источником радиоактивного заражения является та часть горючего, которая не участвовала в ядерной реакции. Так как доля ядерного горючего, принимающего участие в реакции деления, сравнительно мала и, по некоторым данным, не превышает 20%, оставшаяся часть ядерного горючего, будучи раздроблена силой взрыва на мельчайшие частицы, также явится источником радиоактивных частиц. Третьим источником радиоактивного заражения является наведенная активность, возникающая в результате воздействия потока нейтронов, образующихся в момент взрыва, на некоторые химические элементы, входящие в состав грунта и в оболочку ядерного боеприпаса.
3.2 Атомный флот.
На первом месте по колличеству в российском флоте и во флоте зарубежных стран стоят атомные подводные лодки (АПЛ). Поскольку АПЛ приходится плавать на больших глуби-нах, а, следовательно, при большом внешнем давлении, то принимаются особые меры по защите реактора. При повреждении реакторного отсека может возникнуть течь, произоидет облучение воды и, подхваченная течением, она может достичь побережья любого конти- нента. Следом возникнет заражение близ лежащих территорий и обитателей вод данной местности. Но не только плавающие атомоходы представляют опасность для окружающей среды и обитателей планеты. И затонувшие на большой глубине и списанные, они ставят перед человечеством очень сложную проблему захоронения смертельно опасных радио- активных отходов. Из-за несоверенства технологий и низкого качества материалов при высокой температуре и давлении постоянно происходят течи радиоактивного контура и другие аварии, связанные с облучением людей. В итоге после нескольких лет эксплуатации радиационная обстановка на некоторых лодках не позволяет проводить ремонтные работы в реакторном отсеке из-за опасности для жизни личного состава. После чего реактор вырезают , вынимают тепловыделяющий канал, затем заполняют его твердеющей смесью и затапли- вают. Но вынуть тепловыделяющий канал удается не всегда и реактор топят с радио- активными элентами. По заявлению МАГАТЭ глубина затопления подводных лодок и атомных реактаров составляет 4000 м, но возникают ситуации, при которых лодки затапли- вают на меньших глубинах. Так, например, была затоплена лодка К-27 в Карском море с координатами 72° 31’ с.ш. и 55° 30’ в.д. Ясно, что такие ”хранилища” представляют наибольшую опасность.
За время холодной войны СССР и США накопили огромное количество подводных лодок различного назначения и, в настоящее время, стоит проблема утилизации этих подводных лодок и захоронения радиоактивных отходов и ядерных реакторов с них. В России разработан проект государственной программы по обращению с радиоактивными отходами до 2005г. Однако практическое осуществление программы сталкивается с cерьезными трудностями. Не созданы хранилища для реакторных отсеков, в которых они могли бы содержаться тысячелетиями вплоть до естественного распада плутония-239, или до эксплуатации топлива в реакторах на быстрых нейтронах. Соединенные Штаты для хранения радиоактивных отходов всей Америки выбрали гору Юкка-Маунти в штате Невада. Только экспертиза на предмет возможности встроить в эту гору хранилище для радиоактивных отходов обошлась в миллиард долларов, строительство потребует 8 миллиардов. Хранилище представляет собой штольню длинной в 170км. Экспертизе потребовалось ответить на такие вопросы: Возможно ли поступление воды в штольню? Возможны ли в этом районе в ближайшие 10 тыс. лет вулканические явления или землетрясения, способные разрушить хранилище и “высвободить” продукты радиоактивного распада? Существуют и проекты “саркофагов” для реакторных отсеков. Они имеют достаточные научные обоснования. Известно, что вырезанный в 1959г. и затопленный реакторный отсек с подводной лодки “Си Вулф” за 20 лет снизил радиоактивость за счет естественного распада на 90%. Мы же пока копим радиоактивные отходы
3.3 АЭС.Источником облучения, вокруг которого ведутся наиболее интенсивные споры, и являются атомные электростанции, хотя в настоящее время они вносят весьма незначительный вклад в суммарное облучение населения. При нормальной работе ядерных установок выбросы радиоактивных материалов в окружающую среду очень невелики. К концу 1984 года в 26 странах работало 345 ядерных реакторов, вырабатывающих электроэнергию. Их мощность составляла 13% суммарной мощности всех источников электроэнергии и была равна 220 ГВт. До сих пор каждые 5 лет эта мощность удваивалась, однако, сохранится ли такой темп роста в будущем, неясно, Оценки предполагаемой суммарной мощности атомных электростанций на конец века имеют постоянную тенденцию к снижению. Причины тому экономический спад, реализация мер по экономии электроэнергии, а также противодействие со стороны общественности. Согласно последней оценке МАГАТЭ (1983 г.), в 2000 году мощность атомных электростанций будет составлять 720-950 ГВт. Атомные электростанции являются лишь частью ядерного топливного цикла, который начинается с добычи и обогащения урановой руды. Следующий этап производство ядерного топлива. Отработанное в АЭС ядерное топливо иногда подвергают вторичной обработке, чтобы извлечь из него уран и плутоний. Заканчивается цикл, как правило, захоронением радиоактивных отходов. На каждой стадии ядерного топливного цикла в окружающую среду попадают радиоактивные вещества. НКДАР оценил дозы, которые получает население на различных стадиях цикла за короткие промежутки времени и за многие сотни лет. Заметим, что проведение таких оценок очень сложное и трудоемкое дело. Начнем с того, что утечка радиоактивного материала даже у однотипных установок одинаковой конструкции очень сильно варьирует. Например, у корпусных кипящих реакторов с водой в качестве теплоносителя и замедлителя (Boiling Water Reactor, BWR) уровень утечки радиоактивных газов для двух разных установок (или для одной и той же установки, но в разные годы) может различаться в миллионы раз. Доза облучения от ядерного реактора зависит от вpемени и pасстояния. Чем дальше человек живет от атомной электростанции, тем меньшую дозу он получает. Несмотря на это, наряду с АЭС, расположенными в отдаленных районах, имеются и такие, которые находятся недалеко от крупных населенных пунктов. Каждый реактор выбрасывает в окружающую среду целый ряд радионуклидов с разными периодами полураспада. Большинство радионуклидов распадается быстро и поэтому имеет лишь местное значение. Однако некоторые из них живут достаточно долго и могут распространяться по всему земному шару, а определенная часть изотопов остается в окружающей среде практически бесконечно. При этом различные радионуклиды также ведут себя по-разному: одни распространяются в окружающей среде быстро, другие чрезвычайно медленно. Чтобы разобраться в этой ситуации, НКДАР разработал для каждого этапа ядерного топливного цикла параметры гипотетической модельной установки, имеющей типичные конструктивные элементы и расположенной в типичном географическом районе с типичной плотностью населения. НКДАР изучил также данные об утечках на всех ядерных установках в мире и определил среднюю величину утечек, приходящуюся на гигаватт-год вырабатываемой электроэнергии. Такой подход дает общее представление об уровне загрязнения окружающей среды при реализации программы по атомной энергетике. Однако полученные оценки, конечно же, нельзя безоговорочно применять к какой-либо конкретной установке. Ими следует пользоваться крайне осторожно, поскольку они зависят от многих специально оговоренных в докладе НКДАР допущений. Существует пять основных типов энергетических реакторов: водо-водяные реакторы с водой под давлением (Pressurised Water Reactor, PWR), водо-водяные кипящие реакторы (Boiling Water Reactor, BWR), разработанные в США и наиболее распространенные в настоящее время; реакторы с газовым охлаждением, разработанные и применяющиеся в Великобритании и Франции; реакторы с тяжелой водой, широко распространенные в Канаде; водо-графитовые канальные реакторы, которые эксплуатируются только в СССР. Кроме реакторов этих пяти типов в Европе и СССР имеются также четыре реактора-размножителя на быстрых нейтронах, которые представляют собой ядерные реакторы следующего поколения. Величина радиоактивных выбросов у разных реакторов колеблется в широких пределах: не только от одного типа реактора к другому и не только для разных конструкций реактора одного и того же типа, но также и для двух разных реакторов одной конструкции. Выбросы могут существенно различаться даже для одного и того же реактора в разные годы, потому что различаются объемы текущих ремонтных работ, во время которых и происходит большая часть выбросов. В последнее время наблюдается тенденция к уменьшению количества выбросов из ядерных реакторов, несмотря на увеличение мощности АЭС. Частично это связано с техническими усовершенствованиями, частично с введением более строгих мер по радиационной защите. В мировом масштабе примерно 10% использованного на АЭС ядерного топлива направляется на переработку для извлечения урана и плутония с целью повторного их использования. Сейчас имеются лишь три завода, где занимаются такой переработкой в промышленном масштабе: в Маркуле и Ла-Are (Франция) и в Уиндскейле (Великобритания). Самым “чистым» является завод в Маркуле, на котором осуществляется особенно строгий контроль, поскольку его стоки попадают в реку Рону. Отходы двух других заводов попадают в море, причем завод в Уиндскейле является гораздо большим источником загрязнения, хотя основная часть радиоактивных материалов попадает в окружающую среду не при переработке, а в результате коррозии емкостей, в которых ядерное топливо хранится до переработки. За период с 1975 по 1979 год на каждый гигаватт -год выработанной энергии уровеньзагрязнений от завода в Уиндскейле по b- активности примерно в 3,5 раза, а по a-активности в 75 раз превышал уровень загрязнений от завода в Ла-Are. С тех пор ситуация на заводе в Уиндскейле значительно улучшилась, однако в пересчете на единицу переработанного ядерного горючего это предприятие по-прежнему остается более “грязным “, чем завод в Ла-Are. Можно надеяться, что в будущем утечки на перерабатывающих предприятиях будут ниже, чем сейчас. Существуют проекты установок с очень низким уровнем утечки в воду, и НКДАР взял в качестве модельной установку, строительство которой планируется в Уиндскейле. Взрыв или повреждение ядерного реактора несет с собой огромную экологическую катастрофу. Не смотря на то, что при взрыве не высвобождается огромного колличества энергии, как при атомном взрыве последствия в результате заражения будут не меньшими. Важной особенностью аварийного выброса радиоактивных веществ является то, что они представляют собой мелкодисперсные частицы, обладающие свойством плотного сцепления с поверхностями предметов, особенно металлических, а также способностью сорбироваться одеждой и кожными покровами человека, проникать в протоки потовых и сальных желез. Это снижает эффективность дезактивации (удаление радиоактивных веществ) и санитарной обработки (мероприятия по ликвидации загрязнения поверхности тела человека). При одноразовом выбросе радиоактивных веществ из аварийного реактора и устойчивом ветре движение радиоактивного облака происходит в одном направлении. В этом случае след радиоак- тивного облака имеет вид эллипса. Радиационные характеристики зон радиоактивного загрязнения местности при авариях на АЭС см. в Приложении 1 таблица 1.
Показатели размеров зон заражения см. в Приложении 1 таблица 2.
Доза облучения людей на ранней фазе протекания аварии формируется за счет гамма- и бета-излучения радиоактивных веществ, содержащихся в облаке, а также вследствие ингаляционного поступления в организм радиоактивных продуктов, содержащихся в облаке. Данная фаза продолжается с момента начала аварии до прекращения выброса продуктов ядерного деления (ПЯД) в атмосферу и окончания формирования радиоактивного следа на местности. На средней фазе источником внешнего облучения являются радиационные вещества, выпавшие из облака и находящиеся на почве, зданиях и т.п. Внутрь организма они поступают в основном с загрязненными продуктами питания и водой. Средняя фаза длится от момента завершения формирования радиоактивного следа до принятия всех мер по защите населения. Продолжительность этой фазы может быть от нескольких дней до года после возникновения аварии. Поздняя фаза длится до прекращения выполнения защитных мер и отмены всех ограничений деятельности населения на загрязненной территории. В этой фазе осуществляется обычный санитарно-дозиметрический контроль радиационной обстановки, а источники внешнего и внутреннего облучения те же, что и на средней фазе. Есть мнение, что «шум», поднятый вокруг аварии на ЧАЭС журналистами и политиками, как фактор стресса и отрицательных эмоций нанес здоровью людей больший ущерб, чем радиационный выброс. Но, возможно, что АЭС не так опасны, как мы предполагаем. Ивестно что, с начала использования этих электростанций произошло много аварий и катастроф. Самая страшная катастрофа на АЭС произошла в 1986 в Чернобыле. В октябре 1989 года правительство СССР официально обратилось к МАГАТЭ с просьбой провести международную экспертизу разработанной в СССР концепции безопасного проживания населения на территориях, подвергшихся радиоактивному загрязнению и дать оценку эффективности мероприятий по охране здоровья населения, проводимых в этих районах. В результате был создан Международный Чернобыльский Проект (МЧП), в котором приняли участие более двухсот ученых-экспертов из различных международных организаций и разных стран мира. МЧП отметил значительное, не обусловленное радиацией, нарушение здоровья у жителей как обследованных загрязненных, так и обследованных контрольных населенных пунктов, которые изучались в рамках Проекта, но не было выявлено каких-либо нарушений здоровья, непосредственно связанных с воздействием радиации. Авария повлекла за собой значительные отрицательные психологические последствия, выраженные в повышенном чувстве тревоги и возникновении стресса из-за постоянного ощущения весьма сильной неопределенности, что наблюдалось и за пределами загрязненных районов. На основании оцененных в рамках Проекта доз и принятых в настоящее время оценок радиационного риска можно сказать, что будущее увеличение числа раковых заболеваний или наследственных изменений по сравнению с естественным уровнем будет трудно определить даже при широкомасштабных и хорошо организованных долгосрочных эпидемиологических исследованиях. Сообщения о вредных для здоровья последствиях, объясняемых воздействием радиации, не подтвердились ни надлежащим образом проведенными местными исследованиями, ни исследованиями в рамках Проекта. По сравнению с контрольными районами не было обнаружено достоверных отличий числа и видов психологических нарушений, общего состояния здоровья, нарушений сердечно-сосудистой системы, функционирования щитовидной железы, гематологических показателей, случаев раковых заболеваний, катаракт, мутаций хромосом и соматических клеток, аномалий плода и генетических изменени.
3.4 Производство радиоактивного топлива и захоронение радиоактивных отходов.
До сих пор мы совсем не касались проблем, связанных с первой и последней стадией ядерного топливного цикла: производством радиоактивного топлива и захоронением высокоактивных отходов от АЭС и других предприятий. Проблема захоронения является наиболее острой. Во-первых: потому, что в результате деятельности АЭС и других предприятий постоянно появляются радиоактивные вещества непригодные к дальнейшему использованию. Во-вторых: каждое предприятие вырабатывает свои отходы (см. Приложение 2). Эти проблемы находятся в ведении правительств соответствующих стран. В некоторых странах ведутся исследования по отверждению отходов с целью последующего их захоронения в геологически стабильных районах на суше, на дне океана или в расположенных под ними пластах. Предполагается, что захороненные таким образом радиоактивные отходы не будут источником облучения населения в обозримом будущем. НКДАР не оценивал ожидаемых доз облучения от таких отходов, однако в материалах по программе за 1979 год сделана попытка предсказать судьбу радиоактивных материалов, захороненных под землей. Оценки показали, что заметное количество радиоактивных веществ достигнет биосферы лишь спустя 10 - 20 лет. По данным НКДАР, весь ядерный топливный цикл дает ожидаемую коллективно эффективную эквивалентную дозу облучения за счет короткоживущих изотопов около 5,5 чел-Зв на каждый гигаватт-год вырабатываемой на АЭС электроэнергии. Из них процесс добычи руды дает вклад 0,5 чел-Зв, ее обогащение 0,04 чел-Зв, производство ядерного топлива 0,002 чел-Зв, эксплуатация ядерных реакторов около 4 чел-Зв (наибольший вклад) и, наконец, процессы, связанные с регенерацией топлива 0,95 чел-Зв. Как уже отмечалось, данные по регенерации получены из оценок ожидаемых утечек на заводах, которые предполагается построить будущем. На самом же деле для современных установок эти цифры в 10 - 20 раз выше, но эти установки перерабатывают лишь 10% отработанного ядерного топлива, таким образом, приведенная выше оценка остается справедливой. 90% всей дозы облучения, обусловленной короткоживущими изотопами, население получает в течение года после выброса, 98% в течение 5 лет. Почти вся доза приходится на людей, живущих не далее нескольких тысяч километров от АЭС. Ядерный топливный цикл сопровождается также образованием большого количества долгоживущих радионуклидов, которые распространяются по всему земному шару. НКДАР оценивает коллективно эффективную ожидаемую эквивалентную дозу облучения такими изотопами в 670 чел-Зв на каждый гигаватт-год вырабатываемой электроэнергии, из которых на первые 500 лет после выброса приходится менее 3%. Таким образом, от долгоживущих радионуклидов все население Земли получает примерно такую же среднегодовую дозу облучения, как и население, живущее вблизи АЭС, от короткоживущих радионуклидов, при этом долгоживущие изотопы оказывают свое воздействие в течение гораздо более длительного времени. 90% всей дозы население получит за время от тысячи до сотен миллионов лет после выброса. Следовательно, люди, живущие вблизи АЭС, даже при нормальной работе реактора получают всю дозу сполна от короткоживущих изотопов и малую часть дозы от долгоживущих. Эти цифры не учитывают вклад в облучение от радиоактивных отходов, образующихся в результате переработки и от отработанного топлива. Есть основания полагать, что в ближайшие несколько тысяч лет вклад радиоактивных захоронений в общую дозу облучения будет оставаться пренебрежимо малым 0,1 - 1% от ожидаемой коллективной дозы для всего населения. Однако радиоактивные отвалы обогатительных фабрик, если их не изолировать соответствующим образом, без сомнения, создадут серьезные проблемы. Примерно половина всей урановой руды добывается открытым способом, а половина шахтным. Добытую руду везут на обогатительную фабрику, обычно расположенную неподалеку. И рудники, и обогатительные фабрики служат источником загрязнения окружающей среды радиоактивными веществами. Если рассматривать лишь непродолжительные периоды времени, то можно считать, что почти все загрязнение связано с местами добычи урановой руды. Обогатительные же фабрики создают проблему долговременного загрязнения: в процессе переработки руды образуется огромное количество отходов (хвостов). Вблизи действующих обогатительных фабрик (в основном в Северной Америке) уже скопилось 120 млн. т. отходов, и если положение не изменится, к концу века эта величина возрастет до 500 млн. т. Эти отходы будут оставаться радиоактивными в течение миллионов лет, когда фабрика давно перестанет существовать. Таким образом, отходы являются главным долгоживущим источником об лучения населения, связанным с атомной энергетикой. Однако их вклад в облучени можно значительно уменьшить, если отвалы заасфальтировать или покрыть и поливинилхлоридом. Конечно, покрытие необходимо будет регулярно менять. Урановый концентрат, поступающий обогатительной фабрике, подвергается дальнейшей переработке и очистке и на специальных заводах превращается в ядерное топливо. В результате такой переработки образуются газообразные и жидкие радиоактивные отходы, однако дозы облучения от них намного меньше, чем на других стадиях ядерного топливного цикла. Теперь ядерное топливо готово к использованию в ядерном реакторе. Если учесть эти два дополнительных источника облучения, связанные с производством радиоактивного топлива, то для населения Земли ожидаемая коллективно эффективная эквивалентная доза облучения за счет долгоживущих радионуклидов составит около 4000 чел-Зв на каждый гигаватт-год вырабатываемой энергии. Все подобные оценки, однако, неизбежно оказываются ориентировочными, поскольку трудно судить не только о будущей технологии переработки отходов, численности населения и местах его проживания, но и о дозе, которая будет иметь место через 10000 лет. Поэтому НКДАР советует не слишком полагаться на эти оценки при принятии каких-либо решений. Годовая коллективно эффективная доза облучения от всего ядерного цикла в 1980 году составляла около 500 чел-Зв. Ожидается, что к 2000 году она возрастет до 10000 чел-Зв, а к 2100 году до 200000 чел-Зв. Эти оценки основаны на пессимистическом предположении, что нынешний уровень выбросов сохранится, и не будут введены существенные технические усовершенствования. Но даже и в этом случае средние дозы будут малы по сравнению с дозами, получаемыми от естественных источников, в 2100 году они составят лишь 1% от естественного фона. Люди, проживающие вблизи ядерных реакторов, без сомнения, получают гораздо большие дозы, чем население в среднем. Тем не менее в настоящее время эти дозы обычно не превышают нескольких процентов естественного радиационного фона. Более того, даже доза, полученная людьми, живущими около завода в Уиндскейле, в результате выброса цезия-137 в 1979 году была, по-видимому, меньше 1/100 дозы, полученной ими от естественных источников за тот же год. Все приведенные выше цифры, конечно, получены в предположении, что ядерные реакторы работают нормально. Однако количество радиоактивных веществ, поступивших в окружающую среду при авариях, может оказаться гораздо больше. В одном из последних докладов НКДАР была сделана попытка оценить дозы, полученные в результате аварии в Тримайл-Айленде в 1979 году и в Уиндскейле в 1957 году. Оказалось, что выбросы при аварии на АЭС в Тримайл-Айленде были незначительными, однако, согласно оценкам, в результате аварии в Уиндскейле ожидаемая коллективно эффективная эквивалентная доза составила 1300 чел-Зв. Комитет, однако, считает, что нельзя прогнозировать уровень аварийных выбросов на основании анализа последствий этих двух аварий. Но вернемся теперь к нашим проблемам. За последнее время в России тоже произошли аварии на перерабатывающих заводах. 31.08.94 г. подгорание тепловыделяющей сборки ядерного реактора на ПО “Маяк”, в результате которого произошел выброс в атмосферу радионуклидов суммарной бета-активностью 230 мКи и активностью по цезию-137 около 150 мКи. Суммарная бета-активность выпадений, отобранных в ближних зонах ПО “Маяк” сразу после радиационного инцидента 1994 г. на этом предприятии, не превышала пределов обычных колебаний уровней фоновых выпадений для этих местностей. Радиоактивное загрязнение местности накопление на почве радиоизотопов, выпадающих из атмосферы, в течение 1994 г. практически не сказалось на уровнях загрязнения, сложившихся к концу предыдущего 1993 г. Географическое распределение радиоактивного загрязнения почвы на территории страны в 1994 г. также почти не изменилось. Захоронение радиоактивных отходов на дне морей и океанов практикуется с момента появления атомных реакторов на судах. Первыми это сделали США в 1946г., затем великобритания- в1949г., Япония- в 1955г. Первый морской могильник жидких радиоактивных отходов появился в СССР не позднее 1964г., официальных данных об этом естественно нет. Радиактивные отходы помещаются в специальные контейнеры, которые теоретически не разрушаются моркой водой и глубинным давлением. По выработанным МАГАТЭ рекомендациям хоронить предполагается на глубине 4000м, на достаточном удалении от континентов и островов и в районах с минимальной продуктивностью моря, то есть там, где не ведется промышленный лов рыбы и других морских животных. На западе информация о местах захоронения с указанием точных координат, глубины, массы, числа контейнеров и т.п. доступна не только специалистам, но и независимым исследователям. Рассчеты официальных экспертов достаточно оптимистичны: в течение 500 лет даже при существующих уровнях сбросов на одной площадке индивидуальные дозы облучения не должны достигнуть значительных величин. Однако в России существует и другая техника захоронения. Радиоактивные отходы складируются на списанных судах ВМФ, и когда ставить контейнеры с отходами уже некуда, суда буксируются в океан и топятся. Не соблюдаются нормы МАГАТЭ по содержимому затапливаемых контейнеров. Так, например, в заливе Амбросимова недалеко от архипелага Новая Земля, был обнаружен плавающий контейнер с уровнем излучения 160 Р/ч. Не серьезно сравнивать с рекомендациями МАГАТЭ и глубины затопления радиоактивных отходов в районе Новой Земли. Вместо положенного минимума в 4000 м, они колеблются от 18 до 270м. В 1992г. аппарат Президента России рассекретил данные о загрязнении северных и дальневосточных морей: ”В 1959-1992 гг. наша страна сбросила в северные моря жидких радиоактивных отходов суммарной активностью около 20,6 тысяч кюри и твердых – суммарная активность около 2,3миллиона кюри. В морях дальнего востока эти величины составили соответственно:12,3 и 6,2 тысячи кюри”. Видно, что затопление радиоактивных контейнеров производилось с нарушением элементарных норм, и до настоящего времени никто не контролирует их состояние. На Южном Урале в р. Теча, куда в 40-50-х гг. производились сбросы жидких радиоактивных стоков ПО “Маяк”, концентрации стронция-90 в речной воде в 100-1000 раз превышали фоновые. Уровни загрязнения морской воды стронцием-90 также не изменились по сравнению с 1993 г. В водах Каспийского, Охотского, Карского и Баренцева морей, а также в водах Тихого океана, омывающих берега Камчатки, концентрация стронция-90 колебалась в пределах (0,03-0,6)Ч10-12 Ки/л. Концентрации цезия-137, стронция-90 и плутония-239,240 в водах Баренцева и Карского морей, включая места захоронения радиоактивных отходов, сравнимы с наблюдаемыми в других морях и составляют:
цезий -137 - (8-54) Ч10-14 Ки/л;
стронций-90 - (8-32) Ч10-14 Ки/л;
плутоний-239,240 - (5-43) Ч10-17 Ки/л.
4 Заключение.Из всего выше сказанного можно сделать вывод, что радиационно опасные объекты являются опасными не только в момент, или после аварии. Эти объекты явлются источниками радиоактивного заражения, в результате несовершенства конструкций, на протяжении всего своего существования. Эта радиация незначительна, но в случае аварии она возрастает во много раз. На всей территории нашей страны осуществляется государственный контроль за радиационной обстановкой. Все ядерные материалы подлежат государственному учёту и контролю на различных уровнях государственной власти. Государство регулирует так же безопасность при использовании атомной энергии при помощи специально уполномоченных на то федеральных органов исполнительной власти. Они вводят в действие нормы и правила в области использования атомной энергии, осуществляют надзор за их исполнением, проводят экспертизу ядерных установок, применяют меры административного воздействия и выполняют другие функции, связанные с обеспечением безопасности при использовании атомной энергии. На федеральном уровне государственный учёт и контроль ядерных материалов осуществляют Министерство по атомной энергии (Минатом России) и Министерство обороны РФ. На ведомственном уровне эти функции выполняют федеральные органы исполнительной власти, в непосредственном распоряжении которых находятся ядерные материалы. На уровне эксплуатирующей организации, деятельность которой связана с производством, хранением или использованием ядерных материалов, их учёт и контроль осуществляет её администрация. Надзор же за самой системой учёта и контроля ядерных материалов для использования в мирных целях осуществляет Федеральный надзор России по ядерной и радиационной безопасности. Государственный таможенный комитет РФ контролирует перемещение ядерных материалов через таможенную границу. Особо подчёркивается, что вмешательство в деятельность эксплуатирующей организации в части использования ядерной установки не допускается. При потере управления некоторыми частями ядерной установки может наступить серьёзная радиационная авария, что не просто нежелательно, а просто недопустимо. В организациях, где теоретически возможны подобные аварии, обязательно должен быть план мероприятий по защите работников и населения, а так же средства для ликвидации аварий. В качестве профилактики проводятся мероприятия по обеспечению правил, норм в области радиационной безопасности, информирование населения о радиационной обстановке, его обучение в области радиационной безопасности. Общие проблемы безопасности включают глобальный комплекс мероприятий от обоснования требований к персоналу и формирования режимов допуска к информации и работам до ограничений по мерам радиационной, электро-, пожаро-, и взрыво-безопасности. При этом важнейшим является предупреждение аварийности и несанкционированных действий, на что должны быть направлены стройная и четкая система организационно-технического обеспечения и однозначно толкуемая документация. Все это принимает особую необходимость, если РОО находится недалеко от населенного пункта или внутри. В Москве имеются радиационно-опасные объекты, аварии на которых могут привести к заражению значительной части территории города и повлечь за собой человеческие жертвы (см. Приложение 3). В настоящее время особо актуальными стали проблемы учета РОО, поэтому система отчетности требует оптимизации. Соображения безопасности не могут не учитываться на самых ранних стадиях проектирования РОО, поэтому соответствующие требования должны предъявляться к конструктивным системам и программно-аппаратным средствам обеспечения безопасной эксплуатации РОО. При условии соблюдения всех объективных параметров безопасности субъективный фактор приобретает первостепенную важность в соблюдении мер безопасности, бесперебойности функционирования систем эксплуатации, и организационно-технических мер предотвращения несанкционированных действий. Немаловажное значение имеет обучение мерам предупреждения и снижения аварийности и последствий аварий, для чего персонал обязан уметь работать во всеобъемлющей системе контроля, оперативно и квалифицированно действовать при локализации произошедших аварий, проводить комплекс первоочередных и последующих мероприятий по ликвидации последствий аварий. Нельзя обойти вопросы экологических проблем существования всех компонентов РОО. Кроме непосредственно радиоактивных материалов необходимо учитывать наличие активных (в том числе ядовитых), особо чистых веществ, цветных, тяжелых и драгоценных металлов.
Все вышеперечисленное требует соответствующей учебно-материальной базы, основанной на реальных документах, максимально приближенных к реальной технике тренажерах, макетах, муляжах. Процесс обучения целесообразно проводить комплексным методом в ограниченных по количеству группах, сочетая привитие глубоких знаний и твердых практических навыков. Максимальные наглядность, доступность и научность необходимо сочетать без взаимного ущерба и без угрозы стать заложниками финансового дефицита.
ПРИЛОЖЕНИЕ 1.таблица 1.
Радиационные характеристики зон радиоактивного загрязнения местности при авариях на АЭС.
Наименование зон | индекс | Дозы излучения за 1-й год после аварии (рад) | мощность дозы излучения через 1 ч после аварии (Рад/ч) | |||
зон | На внешн. границе | на внутренней границе | в середине зоны | на внешн. границе | на внутр. границе | |
Радиационной опасности | 50 | 16 | 0,014 | 0,14 | ||
Умеренного загрязнения | 50 | 500 | 160 | 0,14 | 1,4 | |
Сильного загрязнения | 500 | 1500 | 866 | 1,4 | 4,2 | |
Опасного загрязнения | 1500 | 5000 | 2740 | 4,2 | 14 | |
Чрезвычайно опасного загрязнения | Г | 5000 | 9000 | 14 |
таблица 2.
Показатели размеров зон заражения (тип реактора - РБМК-1000).
выход активности (%) | Индекс зоны | категория устойчивости "А", скорость ветра 5 м/сек | категория устойчивости "Г", скорость ветра 5 м/сек | ||||
длина (км) | ширина (км) | площадь (кв.км.) | длина (км) | Ширина (км) | площадь (кв.км) | ||
10 10 | М | 270 75 | 18,2 3,9 | 3860 231 | 241 52 | 7,8 1,72 | 1499 71 |
10 10 | Б | 17,4 5,8 | 0,69 0,11 | 9,4 0,52 | (остальные зоны не образуются) | ||
30 30 | М | 418 145 | 31,5 8,4 | 10300 959 | 430 126 | 14 3,6 | 4760 359 |
30 30 | 33,7 17,6 | 1,73 0,69 | 45,8 0,52 | (остальные зоны не образуются) | |||
50 50 50 | М А Б | 583 191 47,1 | 42,8 11,7 2,4 | 19600 1760 88,8 | 561 168 15 | 18 4,08 0,41 | 8280 644 4,95 |
50 50 | 23,7 9,4 | 1,1 0,2 | 20,5 2,05 | (остальные зоны не образуются) |
Источник образования РАО | Вид | Радиоактивные отходы Количество (м3) Активность | (Ки) | Место хранения |
Добыча и переработка руды | Шламы и отвалы пород (НАО) | 1,0Ч108 1,8Ч105 | Хранилища и площадки | |
Обогащение урана и производство тепловыделяющих элементов | Жидкие твердые отходы (НАО) | 1,6Ч106 4,0Ч103 | Хранилища на предприятиях | |
Атомные электростанции | Жидкие концен- траты (САО) Твердые отходы (НАО, САО) Отверж- денные отходы (САО) | 1,5Ч105 4,2Ч104 0,8Ч105 0,7Ч103 1,6Ч104 1,0Ч103 | Металлические емкости Хранилища на АЭС Хранилища на АЭС | |
Радиохимический комплекс предприятия (переработка ОТВС с учетом отходов, накопившихся при получении оружейного плутония) Итого | Жидкие (ВАО) Остек- лован- ные (ВАО) Жидкие (НАО, САО) Твердые (НАО, САО) | 2,5Ч104 5,7Ч108 9,5Ч103 2,0Ч108 4,0Ч108 7,0Ч108 1,0Ч108 1,2Ч107 ~ 6,0Ч108 ~ 1,5Ч109 | Стальные емкости на ПО “Маяк” Хранилища на ПО “Маяк” Емкости, водоемы, бассейны Бетонированные хранилища на предприятиях |
Примечание: НАО - низкоактивные радиоактивные отходы
САО - среднеактивные радиоактивные отходы
ВАО - высокоактивные радиоактивные отходы
Количество радиоактивных отходов,хранящихся на предприятиях различных ведомств
Источник образования РАО | Вид | Радиоактивные Количество | отходы Активность | Место хранения |
Военно-морской флот | Жидкие отходы (НАО) Твердые отходы (НАО) | 1,4Ч104 1,3Ч104 | 1,8Ч102 8,0Ч102 | Береговые и плавучие базы Бетонные хранилища |
Судостроительная промышленность | Жидкие отходы (НАО) Твердые отходы (НАО) | 2,5Ч103 1,5Ч103 | 5,0Ч102 1,0Ч102 | Береговые и плавучие базы Хранилища на предприятиях |
Гражданский морской флот | Жидкие отходы (НАО) Твердые отходы (НАО) Твердые отходы (ВАО) | 3,9Ч102 1,4Ч103 1,0Ч102 | 0,6 2,1Ч102 2,0Ч104 | Береговые хранилища Береговые хранилища Береговые Хранилища |
Пункты захоронения РАО от предприятий неядерного топливного цикла (16 пунктов) | Жидкие, твердые отходы, ампули- рован- ные ИИИ | 2,0Ч105 | 2,0Ч106 | Хранилища спецкомбинатов “РАДОН” |
Итого | ~ 2,4Ч105 | ~ 2,1Ч106 |
Количество отработавшего ядерного топлива, хранящегося на предприятиях
Рекомендуем скачать другие рефераты по теме: качество реферат, функция реферат.
Категории:
Предыдущая страница реферата | 1 2 3 4 | Следующая страница реферата