Имитационное моделирование
| Категория реферата: Рефераты по экономико-математическому моделированию
| Теги реферата: новшество, реферат данные
| Добавил(а) на сайт: Jafaev.
Предыдущая страница реферата | 1 2 3 4 5 | Следующая страница реферата
Эти трудности и обуславливают применение имитационного моделирования.
Оно реализуется по следующим этапам:
1. Как и ранее, формулируются основные вопросы о поведении сложной системы, ответы на которые мы хотим получить.
2. Осуществляется декомпозиция системы на более простые части-блоки.
3. Формулируются законы и «правдоподобные» гипотезы относительно поведения как системы в целом, так и отдельных ее частей.
4. В зависимости от поставленных перед исследователем вопросов вводится так называемое системное время, моделирующее ход времени в реальной системе.
5. Формализованным образом задаются необходимые феноменологические свойства системы и отдельных ее частей.
6. Случайным параметрам, фигурирующим в модели, сопоставляются некоторые их реализации, сохраняющиеся постоянными в течение одного или нескольких тактов системного времени. Далее отыскиваются новые реализации.
Имитационное моделирование воспроизводственных процессов в нефтегазовой промышленности.
Современный этап развития нефтяной и газовой промышленности характеризуется усложнением связей и взаимодействия природных, экономических, организационных, экологических и прочих факторов производства как на уровне отдельных предприятий и нефтегазодобывающих районов, так и на общеотраслевом уровне. В нефтегазовой промышленности производство отличается длительными сроками, эшелонированием производственно - технологического процесса во времени (поиски и разведка, разработка и обустройство, добыча нефти, газа и конденсата), наличием лаговых смещений и запаздываний, динамичностью используемых ресурсов и другими факторами, значения многих из которых носят вероятностный характер.
Значения этих факторов систематически изменяются вследствие ввода в эксплуатацию новых месторождений, а также не подтверждения ожидаемых результатов по находящимся в разработке. Это вынуждает предприятия нефтегазовой промышленности периодически пересматривать планы воспроизводства основных фондов и перераспределять ресурсы с целью оптимизации результатов производственно - хозяйственной деятельности. При составлении планов существенную помощь лицам, готовящим проект хозяйственного решения, может оказать использование методов математического моделирования, в том числе имитационных. Суть этих методов заключается в многократном воспроизводстве вариантов плановых решений с последующим анализом и выбором наиболее рационального из них по установленной системе критериев. С помощью имитационной модели можно создать единую структурную схему, интегрирующую функциональные элементы управления (стратегическое, тактическое и оперативное планирование) по основным производственным процессам отрасли (поиски, разведка, разработка, добыча, транспорт, нефтегазопереработка).
Метод Монте-Карло как разновидность имитационного моделирования.
Датой рождения метода Монте-Карло принято считать 1949 г., когда появилась статья под названием «The Monte Carlo method». Создателями этого метода считают американских математиков Дж. Неймана и С. Улама. В
СССР первые статьи о методе Монте-Карло были опубликованы в 1955—1956гг.
Любопытно, что теоретическая основа метода была известна давно. Более того, некоторые задачи статистики рассчитывались иногда с помощью случайных выборок, т. е. фактически методом Монте-Карло. Однако до появления электронных вычислительных машин (ЭВМ) этот метод не мог найти сколько-нибудь широкого применения, ибо моделировать случайные величины' вручную—очень трудоемкая работа. Таким образом, возникновение метода
Монте-Карло как весьма универсального численного метода стало возможным только благодаря появлению ЭВМ.
Само название «Монте-Карло» происходит от города Монте-Карло в княжестве Монако, знаменитого своим игорным домом.
Идея метода чрезвычайно проста и состоит она в следующем. Вместо того, чтобы описывать процесс с помощью аналитического аппарата
(дифференциальных или алгебраических уравнений), производится «розыгрыш» случайного явления с помощью специально организованной процедуры, включающей в себя случайность и дающей случайный результат. В действительности конкретное осуществление случайного процесса складывается каждый раз по-иному; так же и в результате статистического моделирования мы получаем каждый раз новую, отличную от других реализацию исследуемого процесса. Что она может нам дать? Сама по себе ничего, так же как, скажем, один случай излечения больного с помощью какого-либо лекарства. Другое дело, если таких реализаций получено много. Это множество реализаций можно использовать как некий искусственно полученный статистический материал, который может быть обработан обычными методами математической статистики. После такой обработки могут быть получены любые интересующие нас характеристики: вероятности событий, математические ожидания и дисперсии случайных величин и т. д. При моделировании случайных явлений методом Монте-Карло мы пользуемся самой случайностью как аппаратом исследования, заставляем ее «работать на нас».
Нередко такой прием оказывается проще, чем попытки построить аналитическую модель. Для сложных операций, в которых участвует большое число элементов (машин, людей, организаций, подсобных средств), в которых случайные факторы сложно переплетены, где процесс — явно немарковскпй, метод статистического моделирования, как правило, оказывается проще аналитического (а нередко бывает и единственно возможным).
В сущности, методом Монте-Карло может быть решена любая вероятностная задача, но оправданным он становится только тогда, когда процедура розыгрыша проще, а не сложнее аналитического расчета. Приведем пример, когда метод Монте-Карло возможен, но крайне неразумен. Пусть, например, по какой-то цели производится три независимых выстрела, из которых каждый попадает в цель с вероятностью 1/2. Требуется найти вероятность хотя бы одного попадания. Элементарный расчет дает нам вероятность хотя бы одного попадания равной 1 — (1/2)3 = 7/8. Ту же задачу можно решить и «розыгрышем», статистическим моделированием.
Вместо «трех выстрелов» будем бросать «три монеты», считая, скажем, герб—за попадание, решку — за «промах». Опыт считается «удачным», если хотя бы на одной из монет выпадет герб. Произведем очень-очень много опытов, подсчитаем общее количество «удач» и разделим на число N произведенных опытов. Таким образом, мы получим частоту события, а она при большом числе опытов близка к вероятности. Ну, что же? Применить такой прием мог бы разве человек, вовсе не знающий теории вероятностей, тем не менее, в принципе, он возможен.
Метод Монте-Карло- это численный метод решения математических задач при помощи моделирования случайных величин.
Рассмотрим простой пример иллюстрирующий метод (Приложение 1).
Пример 1. Предположим, что нам нужно вычислить площадь плоской фигуры S.
Это может быть произвольная фигура с криволинейной границей, заданная графически или аналитически, связная или состоящая из нескольких кусков. Пусть это будет фигура изображенная на рис. 1, и предположим, что она вся расположена внутри единичного квадрата.
Выберем внутри квадрата N случайных точек. Обозначим через F число точек, попавших при этом внутрь S. Геометрически очевидно, что площадь
S приближенно равна отношению F/N. Чем больше N, тем больше точность этой оценки.
Две особенности метода Монте-Карло.
Первая особенность метода - простая структура вычислительного алгоритма.
Вторая особенность метода - погрешность вычислений, как правило, пропорциональна D/N2, где D - некоторая постоянная, N - число испытаний.
Отсюда видно, что для того, чтобы уменьшить погрешность в 10 раз (иначе говоря, чтобы получить в ответе еще один верный десятичный знак), нужно увеличить N (т. е. объем работы) в 100 раз.
Ясно, что добиться высокой точности таким путем невозможно. Поэтому обычно говорят, что метод Монте-Карло особенно эффективен при решении тех задач, в которых результат нужен с небольшой точностью (5-10%). Способ применения метода Монте-Карло по идее довольно прост. Чтобы получить искусственную случайную выборку из совокупности величин, описываемой некоторой функцией распределения вероятностей, следует:
1. Построить график или таблицу интегральной функции распределения на основе ряда чисел, отражающего исследуемый процесс (а не на основе ряда случайных чисел), причем значения случайной переменной процесса откладываются по оси абсцисс (х), а значения вероятности (от 0 до 1) - по оси ординат (у).
2.С помощью генератора случайных чисел выбрать случайное десятичное число в пределах от 0 до 1 (с требуемым числом разрядов).
3. Провести горизонтальную прямую от точки на оси ординат соответствующей выбранному случайному числу, до пересечения с кривой распределения вероятностей.
4.Опустить из этой точки пересечения перпендикуляр на ось абсцисс.
5.Записать полученное значение х. Далее оно принимается как выборочное значение. б.Повторить шаги 2-5 для всех требуемых случайных переменных, следуя тому порядку, в котором они были записаны. Общий смысл легко понять с помощью простого примера: количество звонков на телефонную станцию в течение 1 минуты соответствует следующему распределению:
Кол - во звонков Вероятность Кумулятивная вероятность
Рекомендуем скачать другие рефераты по теме: курсовик, контрольные 10 класс.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 | Следующая страница реферата