Денежные потоки в виде серии равных платежей (аннуитеты)
| Категория реферата: Рефераты по экономике
| Теги реферата: реферат исследование, новшество
| Добавил(а) на сайт: Ямов.
1 2 3 4 | Следующая страница реферата
Денежные потоки в виде серии равных платежей (аннуитеты)
И.Я. Лукасевич
Поток платежей, все элементы которого распределены во времени так, что интервалы между любыми двумя последовательными платежами постоянны, называют финансовой рентой или аннуитетом (annuity).
Теоретически, в зависимости от условий формирования, могут быть получены весьма разнообразные виды аннуитетов: с платежами равной либо произвольной величины; с осуществлением выплат в начале, середине или конце периода и др. [13, 16]
В финансовой практике часто встречаются так называемые простые или обыкновенные аннуитеты (ordinary annuity, regular annuity), которые предполагают получение или выплаты одинаковых по величине сумм на протяжении всего срока операции в конце каждого периода (года, полугодия, квартала, месяца и.т.д.).
Выплаты по облигациям с фиксированной ставкой купона, банковским кредитам, долгосрочной аренде, страховым полисам, формирование различных фондов – все это далеко неполный перечень финансовых операций, денежные потоки которых, представляют собой обыкновенные аннуитеты. Рассмотрим их свойства и основные количественные характеристики.
Согласно определению, простой аннуитет обладает двумя важными свойствами:
1) все его n-элементов равны между собой: CF1 = CF2 ...= CFn = CF ;
отрезки времени между выплатой/получением сумм CF одинаковы, т.е. tn - tn-1 = ...= t2 - t1.
В отличии от разовых платежей, для количественного анализа аннуитетов нам понадобятся все выделенные ранее характеристики денежных потоков: FV, PV, CF, r и n.
Будущая стоимость простого (обыкновенного) аннуитета
Будущая стоимость простого аннуитета представляет собой сумму всех составляющих его платежей с начисленными процентами на конец срока проведения операции.
Методику определения будущей стоимости аннуитета покажем на следующем примере.
Пример 1.10
Финансовая компания создает фонд для погашения своих облигаций путем ежегодных помещений в банк сумм в 10000 под 10% годовых. Какова будет величина фонда к концу 4-го года?
FV4 = 10000(1+0,10)3+10000(1+0,10)2+10000(1+0,10)1+10000 = 46410.
Для n-периодов:
. (1.10)
Выполнив ряд математических преобразований над (1.10), можно получить более компактную запись:
. (1.11)
Как уже отмечалось ранее, платежи могут осуществляться j-раз в году (ежемесячно, ежеквартально и т.д.). Рассмотрим наиболее распространенный случай, когда число платежей в году совпадает с числом начислений процентов, т.е. j = m. В этом случае общее число платежей за n-лет будет равно mn, процентная ставка – r/m, а величина платежа – CF/m. Тогда, выполнив преобразования над (1.11), получим:
. (1.12)
Пример 1.11
Предположим, что каждый год ежемесячно в банк помещается сумма в 1000. Ставка равна 12% годовых, начисляемых в конце каждого месяца. Какова будет величина вклада к концу 4-го года ?
Общее количество платежей за 4 года равно: 4´ 12 = 48. Ежемесячная процентная ставка составит: 12 / 12 = 1%. Тогда:
.
Рекомендуем скачать другие рефераты по теме: дипломная работа по праву, лечение пяточной шпори.
Категории:
1 2 3 4 | Следующая страница реферата