Финансовая математика
| Категория реферата: Рефераты по экономике
| Теги реферата: рассказы, конспекты по истории
| Добавил(а) на сайт: Jakunin.
Предыдущая страница реферата | 1 2 3 4 5 6 7 | Следующая страница реферата
б) K = 20000×(100×12/(100×12 – 10))12 = 20000×1.106 = 22132 д.е.
Задача 6. Номинальная годовая ставка – 30%. Найти уравнивающую процентную ставку при начислении сложных процентов каждые 3 месяца.
Решение
= 6.779%.
Задача 7. По одному из вкладов в банке в течение 20 лет накоплено 200000д.е. Найти сумму, положенную на счет первоначально, если годовая процентная ставка (d) составляет 8%.
Решение
K0 = Kn×r-n = Kn×II8%20 = Kn×(1 + p/100)-n = 200000×(1 + 8/100)-20 =
= 200000×0.21454 = 42909 д.е.,
где r = (1 + p/100) – сложный декурсивный коэффициент.
Задача 8. Каждые три месяца в банк вкладывается по 500 д.е. Какова будет совокупная сумма этих вкладов в конце 10-го года при процентной ставке 8% и годовой капитализации.
Решение
Сначала для годовой процентной ставки 8% определим процентную уравнивающую ставку:
=1.9427%
Затем полученную уравнивающую ставку поместим в следующую формулу:
Svmn = u×, где rk = 1 + pk/100,
где v – число вкладов в расчетном периоде,
n - число лет,
m – число капитализаций в год.
тогда
rk = 1 + 1.9427/100 = 1.0194
S4×10 = 500× = 500×60.8157 = 30407.84 д.е.
Задача 9. Насколько увеличатся годовые вклады по 2000д.е. в течение 4 лет при 8% годовых, если капитализация производится раз в три месяца и первый вклад вносится в конце первого года.
Решение
,
u1 = u×I2%4 / III2% = 2000×1.0824 / 4.204 = 514.93 д.е.
Рекомендуем скачать другие рефераты по теме: бесплатные банки рефератов, рефератов.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6 7 | Следующая страница реферата