Образовательный портал Claw.ru
Всё для учебы, работы и отдыха
» Шпаргалки, рефераты, курсовые
» Сочинения и изложения
» Конспекты и лекции
» Энциклопедии

4000

Выручка, равная $2000 с вероятностью 48%, полученная в комбинациях (P1•Q2) и (P2•Q1), является в этом примере наиболее вероятной, а не выручка в $1000 с вероятностью 36%, получаемая при наиболее вероятных оценках цены и объема (т.е. P1•Q1).

Таким образом, представленный пример показывает, что если исследователь абстрагируется от неопределенности и выберет наиболее вероятные значения переменных (факторов), то на выходе значение результативного показателя, являющегося функцией этих факторов, совсем не обязательно будет наиболее вероятным, и это может привести к ошибочным выводам и решениям.

При проведении анализа проектного риска сначала определяются вероятные пределы изменения всех его “рискованных” факторов (или критических переменных), а затем проводятся последовательные проверочные расчеты при допущении, что переменные случайно изменяются в области своих допустимых значений. На основании расчетов результатов проекта при большом количестве различных обстоятельств анализ риска позволяет оценить распределение вероятности различных вариантов проекта и его ожидаемую ценность (стоимость).

Анализ рисков, как уже говорилось, важнейший этап анализа инвестиционного проекта. Согласно финансовой теории, каждая фирма в процессе инвестиционной деятельности стремится максимизировать свою стоимость. В условиях полной определенности и отсутствия риска эта задача эквивалентна задаче максимизации прибыли, т.е. показателя NPV. Но как только предпосылки снимаются, задачи перестают быть эквивалентными. В реальности же для большинства инвесторов и разработчиков важна не только максимизация прибыли, но и минимизация риска рассматриваемого инвестиционного проекта.

Подчеркнем еще одно важное обстоятельство: анализ рисков проекта базируется на осуществленном расчете всех его показателей и критериев, так называемом базисном варианте (на основе фактической и прогнозной информации), доказавшем эффективность проекта.

Использование методов математического программирования для принятия оптимальных инвестиционных решений.

ПРИМЕР

Некий бизнесмен решил создать компанию, сдающую в аренду клиентам офисное оборудование (например, факсы и ксероксы), которое он предполагает закупить. Предположим (для простоты), что каждый договор с клиентом об аренде имеет длительность два года и заключается в момент закупки оборудования компанией, т.е. в начале первого года. Проведенный компанией анализ рынка позволяет утверждать, что существует неограниченный спрос на предлагаемое в аренду оборудование по стандартной арендной плате, общая сумма которой будет выплачена в конце второго года. Чистый дисконтированный доход, полученный бизнесменом от сдачи в аренду каждого факса и каждого ксерокса, составит 400 и 500 ден. ед. соответственно. Стоимость факса 300 ден. ед., из которых часть (100 ден. ед.) выплачивается в конце первого года, а остальная сумма (200 ден. ед.) — в конце второго, ксерокс стоит 400 ден. ед., и схема выплат аналогична: 300 ден. ед. выплачиваются в конце первого года, а остальная сумма (100 ден. ед.) — в конце второго. Бизнесмен предполагает, что доступные ему ежегодные фонды ограничены и составляют 40 000 ден. ед. (в первый год) и 30 000 ден. ед. (во второй год).

Какое количество факсов и ксероксов следует приобрести бизнесмену, чтобы максимизировать суммарный чистый дисконтированный доход проекта?

ОТВЕТ

Решение данной задачи можно получить с помощью методов линейного программирования.

Для построения модели задачи обозначим число единиц оборудования, которое нужно приобрести:

f — число факсов;

х — число ксероксов.

Введем ограничения:

100f + 300x <= 40 000 (1.1);

200f + 100x <= 30 000 (1.2).

Экономический смысл построенных ограничений (1.1), (1.2) состоит в том, что ежегодные суммарные выплаты за приобретенные бизнесменом факсы и ксероксы не могут превышать размеров доступных ему ежегодных фондов. Кроме того, для реальных экономических величин должны выполняться ограничения:

f >= 0 (1.3);

х >= 0 (1.4).

Требуется максимизировать функцию

z = 400f + 500х (1.5)

при ограничениях (1.1)—(1.4).

Известно, что в случае двух переменных решение задачи математического программирования можно провести не только аналитически (например, используя симплекс-метод), но и графически. В нашем примере интерес представляет только целочисленное решение.


Рекомендуем скачать другие рефераты по теме: реферат на тему понятие, диплом 2011.


Категории:




Предыдущая страница реферата | 1  2  3  4  5 |


Поделитесь этой записью или добавьте в закладки

   



Рефераты от А до Я


Полезные заметки

  •