От физики необходимого к физике возможного
| Категория реферата: Рефераты по философии
| Теги реферата: сообщения бесплатно, реферат будущее
| Добавил(а) на сайт: Филимон.
1 2 3 4 5 | Следующая страница реферата
От физики необходимого к физике возможного
Аруцев Александр Артемьевич, Ермолаев Борис Валерьевич, Кутателадзе Ираклий Отарович, Слуцкий Михаил Семенович
Время - неотъемлемая составляющая нашего бытия. Веками пленяло оно воображение художников, философов, поэтов. Включение времени в галилеевскую механику ознаменовало рождение новой науки. Центральное место нашего пособия - проблема стрелы времени (это понятие ввел в 1928 году Артур Эддингтон). Ведь в том виде, в каком время входит в основные законы физики, оно само не вносит никакого различия между прошлым и будущим! Многие нынешние физики воспринимают отрицание стрелы времени как постулат: до тех пор и покуда речь идет о фундаментальном уровне описания, ее не существует.
Тем не менее во всех явлениях макроскопической физики, химии, геологии, биологии или гуманитарных наук будущее и прошлое неравноправны - в них присутствует стрела времени. Каким же образом, где она возникает, если в исходных физических законах ее нет? Откуда появляется асимметрия между прошлым и будущим? Или, может быть, воспринимаемая нами направленность времени - это не более чем иллюзия? Так мы приходим к главному парадоксу времени.
Парадокс времени не был осмыслен вплоть до второй половины XIX века. В те годы законы динамики уже давно воспринимались как выражающие идеал объективного знания. А поскольку из этих законов следовала эквивалентность прошлого и будущего, любые попытки ввести стрелу времени в фундамент физики наталкивались на упорное сопротивление - их рассматривали как покушение на этот идеал и предпочитали возлагать ответственность за различие между прошлым и будущим на наблюдателя, привносящего в описание явлений разные приближения, неточности.
Однако сейчас разделять эту точку зрения уже невозможно. В последние десятилетия родилась новая наука - физика неравновесных процессов, связанная с понятиями самоорганизации и диссипативных структур. Если прежде стрела времени проникала в физику через такие простые процессы, как диффузия и вязкость, которые еще можно понять, исходя из обратимой во времени динамики, то ныне ситуация иная. Теперь мы знаем, что необратимость приводит к множеству новых явлений - образованию вихрей, колебательным химическим реакциям или лазерному излучению. Во всем этом необратимость играет конструктивную, организующую роль. Невозможно представить жизнь в мире, лишенном взаимосвязей, которые создаются принципиально необратимыми процессами. Следовательно, утверждать, будто стрела времени - "всего лишь феноменология" и обусловлена способом нашего описания природы, с научной точки зрения абсурдно.
Парадокс времени ставит перед нами проблему содержания и роли законов природы. Отождествление науки с поиском этих законов, по-видимому, есть характерная черта западного мышления. Прототипом универсального закона природы может служить один из законов Ньютона, который кратко формулируют так: ускорение пропорционально силе. Этот закон имеет две важные особенности. Он детерминистичен: коль скоро начальные условия известны, мы можем предсказывать движение. И он обратим во времени: между предсказанием будущего и восстановлением прошлого нет никакого различия; иными словами, движения от текущего к будущему состоянию и обратно - от текущего к начальному - равноправны.
Закон Ньютона лежит в основе классической механики - науки о движении материи, о траектории. С начала XX века границы физики значительно расширились, теперь у нас есть квантовая механика и теория относительности, но основные отличительные особенности закона Ньютона - детерминизм и обратимость во времени - сохранились.
Понятие "закон природы" заслуживает более подробного анализа. Мы настолько привыкли к нему, что оно воспринимается как трюизм, как нечто само собой разумеющееся. Однако в других картинах мира привычная нам концепция закона природы отсутствует. По Аристотелю, живые существа не подчиняются никаким законам; деятельность этих существ обусловлена автономными внутренними причинами, каждое из них стремится к достижению своей собственной истины. А в Китае господствовали взгляды об изначальной гармонии космоса, некоем статическом равновесии, связывающем воедино природу, общество и небеса. Идея о том, что в мире могут действовать законы, вызрела в недрах европейской цивилизации. Значительное влияние на формирование представлений о законах природы оказала Библия с ее Всеведущим и Всемогущим божеством.
Однако на протяжении всей истории западной мысли неоднократно поднимался один и тот же вопрос: что есть возникновение нового в мире, управляемом детерминистическими законами?
Впервые этим вопросом задались задолго до рождения современной науки. Платон связывал разум и истину с "миром идей" - высшим бытием, не подверженным изменениям, текучести реального мира с его постоянным "становлением". Становление - неиссякаемый поток воспринимаемых нами явлений - философ относил к сфере чистого мнения. Однако Платон сознавал ущербность такой позиции, поскольку она принижала и жизнь, и мысль. В "Софисте" он приходит к заключению, что необходимы и бытие, и становление.
С той же трудностью столкнулись и атомисты. Чтобы допустить возникновение нового, Лукрецию пришлось ввести "клинамен" - некий фактор, возмущающий свободное падение атомов в пустоте.
Обращение к клинамену часто подвергалось критике за введение в атомистическое описание чужеродного элемента. Но и через два тысячелетия мы встречаем аналогичную попытку в работе Эйнштейна, посвященной спонтанному испусканию света возбужденным атомом. Параллелизм особенно неожиданный, если мы вспомним, что Лукреций и Эйнштейн разделены, по-видимому, величайшей революцией в наших отношениях с природой - рождением новой науки.
И клинамен, и спонтанное испускание света относятся к событиям, иными словами, к реализациям определенных возможностей, заданных своими вероятностями. События и вероятности фигурируют в теориях эволюции, будь то дарвинизм или история человечества (мы увидим, что события также связаны с термодинамической стрелой времени в области сильно неравновесных процессов). Можно ли пойти дальше, чем Лукреций и Эйнштейн, "добавившие" события к детерминистическим законам? Можно ли "видоизменить" само понятие физического закона так, чтобы включить в наше описание природы необратимость? Принятие такой программы повлекло за собой основательный пересмотр законов природы, который стал возможен благодаря замечательным успехам, связанным с идеями неустойчивости и хаоса.
Начнем с рассмотрения классической динамики. Представляется, что все системы, описываемые законами Ньютона, в чем-то одинаковы. Конечно, каждому известно, что рассчитать траекторию системы трех тел, например Солнца, Земли и Юпитера, труднее, чем траекторию падающего камня, но эти трудности считали непринципиальными, связанными только с большим объемом вычислений. Однако в последние десятилетия выяснилось, что подобное мнение неверно - не все динамические системы одинаковы. Оказалось, что такие системы подразделяются на устойчивые и неустойчивые. Так, маятник устойчив: слабые возмущения мало сказываются на его движении; но для большинства динамических систем малые начальные отклонения постепенно возрастают. Крайний случай неустойчивых систем - так называемые хаотические системы, для которых описание в терминах траекторий становится недостаточным, поскольку первоначально сколь угодно близкие траектории со временем экспоненциально расходятся.
Итак, хаос появляется в макроскопических необратимых процессах, где он, так сказать, "негативен" - делает невозможными определенные предсказания вследствие быстрого расхождения соседних траекторий. Этот эффект равнозначен чувствительности решения уравнения к начальным условиям, через которую обычно определяют хаос. Однако важный новый момент состоит в том, что хаос обретает теперь и "позитивные" аспекты. Так как отдельные траектории становятся чрезмерной идеализацией, Пригожин вынужден обратиться к вероятностному описанию в терминах ансамбля возможных траекторий. Такое описание само по себе не ново: оно служило отправным пунктом развитого Гиббсом и Эйнштейном подхода к статистической физике.
Здесь нужно подчеркнуть одно очень существенное обстоятельство: из вероятностного описания, вводимого для хаотических систем, вытекает необратимость, потому что оно применимо уже не к отдельной траектории, а к пучку, расходящемуся "вееру" возможностей. Это утверждение есть результат строгого анализа методами современной математики. Значит, в таком вероятностном представлении прошлое и будущее начинают играть различные роли. Иначе говоря, хаос вводит стрелу времени в фундаментальное динамическое описание.
Хаос позволяет разрешить парадокс времени, но он делает и нечто большее - привносит вероятность в классическую динамику, то есть в область детерминистической науки. В данном контексте вероятность выступает уже не как следствие нашего незнания, а как неизбежное выражение хаоса. В свою очередь это позволяет по-новому определить хаос. Мы сказали, что хаос приводит к необратимому вероятностному описанию, теперь же мы перевернем это утверждение: все системы, допускающие необратимое вероятностное описание, будем считать хаотическими. Таким образом, системы, о которых идет речь, допускают описание не в терминах отдельных траекторий (или отдельных волновых функций в квантовой механике), а только в понятиях пучков (или ансамблей) траекторий.
Сфера проявлений хаоса чрезвычайно расширилась и включила в себя фактически все системы, описываемые современными теориями взаимодействующих полей. Столь широкое обобщение понятий хаоса требует новой - третьей - формулировки законов физики: первая была основана на исследовании индивидуальных траекторий или волновых функций; вторая - на теории ансамблей Гиббса и Эйнштейна (с динамической точки зрения вторая формулировка не вносит новизны, поскольку, будучи примененной к отдельным траекториям или волновым функциям, сводится к первой). Теперь мы приходим к третьей формулировке, имеющей совершенно иной статус: она применима только к ансамблям и справедлива только для динамических систем. Она приводит к выводам, которые не могут быть получены ни на основе ньютоновской, ни ортодоксальной квантовой механики. Именно это новое представление, вводящее необратимость в фундамент описания природы, позволяет объединить свойства микро и макромира.
Мотивацией концепции И.Р. Пригожина служил парадокс времени, но он существует не сам по себе. С ним тесно связаны два других парадокса, которые, как мы увидим, имеют самое непосредственное отношение к отрицанию стрелы времени: квантовый парадокс и космологический парадокс.
В квантовом мире движение описывают волновыми функциями. Главное отличие волновой механики от ньютоновской состоит в том, что классические траектории, получаемые из уравнения движения, непосредственно соответствуют наблюдаемым, тогда как квантово-механические волновые функции, будучи решениями уравнения Шредингера (играющего, в принципе, ту же роль, что уравнение Ньютона), задают только амплитуду вероятности, с которыми реализуются различные возможные траектории. И чтобы получить сами вероятности каждого исхода, нужно произвести дополнительную операцию - редукцию (коллапс) волнового пакета. Эта операция связана с процедурой измерения, она лежит вне основного уравнения теории.
Отсюда вытекает двойственность квантовой механики - наличие двух разнородных элементов (волновой функции и ее редукции) приводит к концептуальным трудностям, споры вокруг которых продолжаются вот уже шестьдесят лет - с момента возникновения этой теории. Хотя ее с полным основанием называли наиболее успешной из всех существующих физических теорий, пока так и не удалось выяснить физический смысл редукции волновой функции. Многие ученые полагают, что ответственность за нее несет наблюдатель и производимые им измерения.
Между парадоксом времени и квантовым парадоксом есть тесная аналогия. Оба они отводят нам довольно странную роль: получается, что человек ответствен как за стрелу времени, так и за переход от квантовой потенциальной возможности к уже свершившемуся, то есть за все особенности, связанные с переходом от становления к событиям в нашем физическом рассмотрении.
Поскольку квантовые хаотические системы описывают не в терминах волновых функций, а сразу в терминах вероятностей, отпадает необходимость в коллапсе волновой функции. Временная эволюция хаотических систем преобразует описание через волновые функции в описание ансамбля траекторий. Посредником, связывающим нас с природными явлениями, выступает уже не акт наблюдения, а квантовый хаос.
Идеи, охватывающие общим подходом хаос, стрелу времени и квантовый парадокс, приводят нас к более "целостному" пониманию природы, которое включает в себя и становление, и события (на всех уровнях описания). Традиционные законы природы соответствовали замкнутой детерминированной Вселенной, прошлое и будущее которой, по сути, неразличимы. Это рассматривалось как триумф человеческого разума, преодолевающего ограниченность видимой изменчивости природы. Но такой взгляд был чужд другим наукам, которые предполагали стрелу времени. Теперь мы понимаем, что детерминированные, симметричные во времени законы справедливы только для устойчивых классических и квантовых систем, то есть для весьма ограниченного их класса. Место этих законов заняли ныне вероятностные представления, которые соответствуют открытой Вселенной, где в каждый последующий момент времени возникает новое, где в игру вступают неизвестные прежде факторы.
Рекомендуем скачать другие рефераты по теме: клетка реферат, реферат на тему орган.
Категории:
1 2 3 4 5 | Следующая страница реферата