Рассмотрение онтологического статуса предметов математики в некоторых философских системах
| Категория реферата: Рефераты по философии
| Теги реферата: реферат по культурологии, доклад по биологии
| Добавил(а) на сайт: Щедров.
Предыдущая страница реферата | 1 2 3 | Следующая страница реферата
В "Правилах для руководства ума" (Правило XIV) Декарт устанавливает, что первым и наиболее простым способом рассуждения о протяженности является измерение. Благодаря ему становится возможным судить о протяженных предметах и более сложно. Но чтобы измерять, нужно установить единицу измерения, к которой "одинаково приобщены все те вещи, какие сравниваются между собой" ([23], c. 140). Но и сама единица должна являть собой некое протяжение, точнее, протяженную вещь. Что это за вещь, зависит от природы измеряемого предмета. В разных измерениях единица может быть различной. Это может быть и квадрат, и куб, и треугольник. Протяжение, по мысли Декарта, присуще, в конечном счете, даже простой арифметической единице. Последнюю он предлагает изображать, например, в виде точки. Вообще, арифметические операции он мысли либо как операции с множествами подобных точек (наподобие пифагорейских фигурных чисел), либо как операции с отрезками. Таким способом и счет, и алгебраические правила должны оказаться производными от измерения протяженного тела.
Таким образом, выбор единицы зависит от цели производимого измерения, природы измеряемого предмета и, возможно, от многих других обстоятельств. В конечном счете - это некий произвол того, кто занят измерением. Именно он должен выбрать единицу так, чтобы измеряемый предмет предстал ему наиболее ясно и отчетливо. Иными словами, протяженная субстанция оказывается как бы не вполне субстанцией. Ее представление зависит от того, кто о ней мыслит. Есть нечто (точнее некто), что можно назвать субстанцией с большим основанием, чем любое протяженное тело. Такой субстанцией является мыслящее Я, существование которого устанавливается с гораздо большей очевидностью, чем существование чего бы то ни было еще. Именно отнесенность к этой субстанции определяет онтологический статус любой вещи. Без представления о существовании "Я" нельзя вообще ничего достоверно помыслить как существующее. Как основание для протяженной субстанции необходима субстанция мыслящая. Эта последняя, что немаловажно, также не может мыслиться как совершенно независимая. Точнее, оставаясь совершенно независимой, она была бы лишена возможности всякого знания (кроме того несомненного знания, что "Я существую"). Есть еще третья (впрочем, скорее первая) субстанция - Бог, благодаря которому мыслящий ум не только приобретает истинные знания, но и обретает уверенность в их истинности. Поэтому наряду с иерархией атрибутов возникает еще иерархия субстанций - Бог, Я, протяженное тело - где каждая последующая субстанция субстанциональна благодаря отнесенности к предыдущей. Однако, место, которое занимает в этом ряду субстанций мыслящее Я, оказывается, если следовать указанию порядка расположения, не просто средним, но центральным. Именно эта субстанция оказывается беспредпосылочным началом знания, о котором мы говорили в начале параграфа. Порядок познания у Декарта совершенно не соответствует онтологическому порядку сущего. Ум (как этого хотел бы, например, Платон) не движется снизу вверх, устремляясь к высшему знанию, или сверху вниз, обосновывая низшее высшим. Он, если пользоваться этими топологическими метафорами, начиная из самого себя, как из центра, расходится в разные стороны.
Иерархическое построение Декарта наталкивает на один своеобразный мыслительный ход, который, на наш взгляд, был весьма полно осуществлен Беркли. Из трех названных субстанций, последняя кажется не вполне, если так можно выразиться, субстанциональной. Конечно в логике, предлагаемой Декартом, требуется нечто существующее, чему должна быть приписана протяженность. Но то, как строится рассуждение о протяженности, не оставляет за ней уже никакой независимости от ума. Весь материальный мир, целиком дедуцируемый из геометрических истин, не может быть ничем, кроме умственной конструкции. Можно считать, что за всей этой конструкцией на самом деле существует некая субстанция, действительно обладающая всеми теоретически установленными атрибутами и модусами. Однако то, как эти атрибуты и модусы были найдены, не имеет к ней никакого отношения. Их установлением мыслящая субстанция (т.е. Я) обязана лишь себе и Богу. Иначе говоря, в стремлении к достоверному знанию ум действует (или, во всяком случае, должен действовать) так, как если бы никакой не зависящей от него протяженной субстанции не было.
При всем несовпадении гносеологических принципов Декарта с философией Беркли у обоих философов присутствует некое общее представление о субстанциональности. Для Беркли объектом познания является не субстанция, а идея, которая существует только в уме и только в результате конкретного восприятия. Вещь представляет собой комплекс идей и, следовательно, также не существует нигде, кроме ума. Беркли пишет: "То, что говорится о безусловном существовании немыслящих вещей без какого-либо отношения к их воспринимаемости, для меня совершенно непонятно. Их esse есть percipi, и невозможно, чтобы они имели какое-либо существование вне духов или воспринимающих их мыслящих вещей" ([6], с. 172). Только мыслящая вещь может быть названа субстанцией. "Нет иной субстанции, кроме духа или того, что воспринимает" (Там же, с. 174 - курсив Беркли). Немыслящая вещь существует постольку, поскольку принадлежит субстанции. Здесь Беркли вроде бы повторяет мысль своих предшественников. Существование чего-либо определено лишь связью с субстанцией, т.е. тем, что не нуждается ни в чем и ни о чем не сказывается. Интересен, однако, онтологический статус вещей. Он обнаруживается из рассмотрения вопроса о происхождении идей. Сами идеи не могут быть причиной своего появления или изменения. Образовывать их может лишь мыслящая вещь, т.е. их субстанция. Идеи возникают в своей субстанции (в уме), либо благодаря действию этой субстанции на себя (воображение), либо благодаря воздействию другой субстанции. Эта другая субстанция является основным источником идей и причиной их устойчивой связи в человеческом уме. Ее Беркли называет "вседержащим духом" - речь, следовательно, идет о Боге. Таким образом, сам факт существования чувственно воспринимаемых вещей оказывается фактом взаимодействия двух мыслящих (в терминологии Беркли - "духовных") субстанций. Человеческие представления о вещах, т.е. идеи, оказываются средством общения субстанций. Истинность знания о вещах и о внешнем мире эквивалентна правильности такого общения.
Вполне естественно, что протяженность не может приобрести при таких посылках особого статуса (как у Декарта). Она - одно из многих воспринимаемых качеств. Точно также и математические объекты никак не выделены относительно иных. Тем не менее Беркли очень пристально изучает проблему математического существования, развивая при этом весьма оригинальную философию математики. (См. примечание 3) Мы не будем подробно останавливаться на этой стороне творчества Беркли. Заметим лишь, что его рассмотрение математики носит в основном критический характер. Поскольку именно математика может быть рассмотрена как наука об общих понятиях, не имеющих никакого чувственного представления, Беркли очень тщательно разбирает математические идеи, стараясь доказать, что в них нет ничего абстрактного или внечувственного.
Однако один аспект подхода Беркли к математике мы считаем особенно важным. Выше мы говорили, что истинность знания означает некую "правильность" в общении двух субстанций. Ряд высказываний Беркли позволяет установить, о какой правильности идет речь. Прежде всего, рассматривая предмет арифметики, Беркли отрицает всякий смысл в попытках увидеть в ней специальное знание о числах, как особых объектах. Он утверждает, что если мы "ближе вникнем в собственные мысли", то "станем смотреть на все умозрения о числах, лишь как на difficiles nugae, (См. примечание 4) поскольку они не служат практике и не идут на пользу жизни" ([6], c. 228; курсив наш - Г.Г.). Далее Беркли прямо утверждает, что наука о числах "становится узкой и пустой, когда рассматривается только как предмет умозрительный", но становится осмысленной, будучи "всецело подчинена практике" (Там же). Такой подход к арифметике может быть отчасти оправдан тем, что по мнению Беркли у нее вовсе нет собственного предмета, а все ее выводы в действительности относятся только к пересчету вещей. То что мы называем числами суть лишь знаки, облегчающие процедуру счета (с. 229). Однако требование полезности Беркли предъявляет и к геометрии, которая все же имеет собственную предметную область - протяженные вещи, воспринимаемые чувствами. Однако и здесь осмысленным признается лишь такое рассуждение, которое имеет практическую ценность. Беркли вполне ясно предлагает вовсе отказаться от всяких исследований, касающихся проблем бесконечной делимости и исчисления бесконечно малых величин, поскольку не видит в этом отказе никакого вреда для человечества (с. 235).
Вопрос о вреде и пользе, однако, представляет специальный интерес, поскольку речь здесь вовсе не идет о примитивной утилитарности. Можно понимать под практической пользой способ такого обращения с вещами, которое позволяет людям лучше (удобнее, проще, комфортнее) чувствовать себя в жизни. Но важно помнить, что вещи, с которыми надо обращаться, суть результаты воздействия внешней субстанции, "вседержащего духа". Следовательно, правильное поведение в жизни, адекватное обращение с вещами, приводящее к благим последствиям для обращающегося, есть по существу способ общения с названным духом, т.е. его понимание и следование его воле. Практика оказывается, согласно известному выражению "критерием истины", но не потому, что приводит к адекватному отражению законов материального мира, а потому, что дает возможность удостовериться в правильности взаимопонимания двух индивидов (правда далеко не равноправных в своем общении). Поэтому к практике непосредственно относится нравственное поведение. В одном из пассажей, касающихся необходимости практической пользы математических исследований Беркли призывает ученых обратится к исследованию "таких вещей, которые ближе касаются нужд жизни и оказывают прямое влияние на нравы" (с. 235; курсив наш - Г.Г.).
Беркли высоко ценил идеал правильного общения в человеческом сообществе, живущем согласно воле провидения, т.е. сообразно установленным Богом нормам морали. "Если же мы допустим существование сообщества разумных созданий, действующих под надзором Провидения, совместными усилиями способствующих достижению единой цели - благу и пользе единого - и согласующих свои поступки с утвержденными отчей мудростью Божества законами;...если мы все это допустим, то сделаем предположение восхитительное и радостное." ([8], c. 90). Этот проект идеального общества позволяет иначе взглянуть на роль математики и естественных наук. Познание вещей, так, как они действительно существуют, есть понимание тех воздействий, которые Бог оказывает на человека. Следовательно, истинное естественнонаучное и математическое знание ведет, в конечном счете, к установлению подлинно благих правил и норм взаимодействия "разумных агентов". Онтологический статус предметов математики определяется поэтому не их объективной, но их интерсубъективной (См. примечание 5) значимостью. Первоначальная посылка Беркли - "Существовать, значит быть воспринимаемым" - может быть, по нашему мнению, прочитана так: "Существовать, значит способствовать правильному общению разумных существ."
3 Математическое существование в философии Канта. Предварительное рассмотрение
В интерпретации Беркли субстанция не есть идея, а потому не может быть предметом познания. Иными словами, субстанция - только субъект, но не объект знания. Осмысление проблемы в субъект-объектной терминологии в полной мере осуществлено Кантом, который, отчасти, вернул слову "субстанция" аристотелевский смысл.
То, что Декарт и Беркли (а также и другие философы Нового времени) называли мыслящей субстанцией, Кант назвал субъектом, подробно рассмотрев его логическую структуру. При этом он настаивал, что мыслящее Я нельзя называть субстанцией. Последняя есть категория, предназначенная для того, чтобы судить об объекте мысли. Эта категория позволяет судить о явлениях, как о способах обнаружения некоторого неизменного основания. "Схемой субстанции служит устойчивость реального во времени, т.е. представление о нем, как о субстрате эмпирического определения времени вообще, который, следовательно, остается, тогда как все остальное меняется" (B183 - ссылки на "Критику чистого разума" делаются в соответствии с пагинацией второго издания (1787 года), которая дается в большинстве русских переводов). Субстанция, таким образом, есть устойчивое основание того, о чем ведется рассуждение. Всякое суждение сказывается о субстанции, как о носителе выражаемых этим суждением свойств. Такая трактовка в самом деле в чем-то близка Аристотелю. Однако особого рассмотрения требует вопрос о том, как производится суждение и как, в конечном счете, строится рассуждение.
Суждение о предмете означает синтез, производимый согласно априорным условиям. Такой синтез состоит в установлении субъектом мышления связи данных представлений. Связь представлений в суждении не может быть дана, а может быть только создана субъектом (B130). В Главе 3 мы подробно разберем вопрос о синтезе в применении к математике. Сейчас лишь обратим внимание на то, что Кант выделяет два рода синтеза - "интеллектуальный" и "фигурный" - и, соответственно, два плана дискурса: рассудочный синтез общих понятий и синтез способности воображения, состоящий в конструировании единичных предметов.
Рассудочное мышление состоит в создании субъектом единства в своих представлениях. Поэтому предмет, чтобы стать объектом мышления, должен быть сконструирован субъектом. (См. примечание 6)Это конструирование может быть понято в том числе и в самом прямом смысле, как сборка конструкции из набора элементов. Последнее относится прежде всего к математике. Алгебраическая формула, равно как и геометрическая фигура, становятся объектами рассуждения, будучи сконструированы продуктивной способностью воображения, т.е. собраны в пространстве из более простых фигур, формул или знаков. Поэтому всякий математический предмет существует постольку, поскольку он сконструирован. Вопрос о существовании, таким образом, никак прямо не связан с проблемой субстанциональности. Существование определено деятельностью субъекта. Кант очень жестко развел понятия субъекта и субстанции. Первый описан им как действующее сознание, которое продуцирует предметы своего знания, обнаруживая в этих, созданных им предметах свое собственное единство. Это единство - единство деятельного 'Я' или "трансцендентальное единство апперцепции" никак не может быть названо субстанцией, хотя бы даже и мыслящей. Нельзя путать два вопроса: кто рассуждает и о чем ведется рассуждение. Субстанциальность может быть приписана только предмету, который конструируется в ходе рассуждения и при этом обнаруживается как существующий. Но тот, кто рассуждает не может конструировать сам себя.
Итак, онтологический статус предмета определяется не его отношением к субстанции, а его отношением к субъекту. Деятельность субъекта является критерием существования. Эта деятельность происходит в рамках, заданных ее трансцендентальными условиями, к которым, прежде всего, относятся пространство и время. Сама деятельность разворачивается во времени, как последовательность продуктивных синтетических актов. То, что появляется в результате этих актов, представляется как существующее в пространстве. Последнее верно для любого объекта, в том числе и для математического. Однако математика оказывается основой всякого, по крайней мере научного, мышления. Всякий объект существует, поскольку существует в пространстве. Но поскольку он существует в пространстве, он существует как протяженный предмет, и судить о нем нужно, прежде всего, как о предмете геометрии. "Все явления суть величины и притом экстенсивные величины" (B203; курсив Канта). Отчасти Кант повторяет здесь Декарта - во всяком случае и для него всякое естествознание должно быть прежде всего математическим естествознанием. Всякий предмет конструируется прежде всего как геометрическая фигура или тело. Коль скоро существовать значит быть сконструированным (причем сконструированным в пространстве), то любой предмет существует только в качестве математического. Вне математики невозможно никакое знание и никакое существование.
Онтологический статус предметов математики состоит, таким образом, в том, что они оказываются продуктами деятельности трансцендентального субъекта. Математическое творчество последнего несколько напоминает работу некого мыслительного автомата, производящего свои объекты без всякой определенной цели. Поэтому нам представляется недопустимым ограничивать рассмотрение математической онтологии Канта одной лишь первой "Критикой". Мы ограничимся здесь анализом лишь небольшого фрагмента из "Критики способности суждения", однако этот фрагмент, на наш взгляд, позволяет ввести в математический дискурс мотив целесообразности, а также увидеть нечто новое в кантовском понимании математической онтологии. Правда, в отличии от "Критики чистого разума", изобилующей математическими примерами, "Критика способности суждения" обращается, по преимуществу, к сферам, далеким от математики. Тем не менее установленные там принципы отнюдь не безразличны для интерпретации математической деятельности.
Понятие цели в деятельности субъекта вводится при анализе рефлектирующей способности суждения. Взаимодействие рассудка со способностью воображения сводится к тому, что воображение конструирует объект сообразно общему правилу, предписанному рассудком. При этом происходит подведение конструируемого единичного предмета под уже имеющееся правило. Однако далеко не всегда правило имеется как нечто окончательно сформулированное. "Существует такое многообразие форм природы, столько модификаций общих трансцендентальных понятий, остающихся не определенными теми законами, которые априорно дает чистый рассудок,...что для всего этого также должны быть законы" ([28], с. 50). Такой закон должна дать способности воображения рефлектирующая способность суждения, которая поднимается от имеющегося особенного к общему. Кант относит такую деятельность к эмпирической сфере, к описанию "законов природы". В [33] деятельность рефлектирующей способности суждения представлена как выдвижение объясняющих гипотез для ряда наблюдаемых эмпирических фактов. Так, утверждение, что планета движется по эллиптической орбите, есть обобщение рефлектирующей способности суждения, сделанное по отношению к ряду эмпирических наблюдений за движением планеты. Важно иметь в виду, что такое обобщение не имеет ничего общего с абстрагированием. Понятие эллипса не содержится в бессвязном наборе цифр, определяющих положение планеты в разные моменты времени. Очевидно, что речь здесь вновь должна идти о синтезе, основанном на априорных способностях субъекта. Этот синтез отличается от простого синтеза способности воображения тем, что содержит момент целесообразности. Он производится для того, чтобы объяснить ряд полученных фактов. Не следует упускать из виду, что полученный факт также есть результат некоторого конструирования, т.е. объект рассудка и способности воображения. В свою очередь гипотеза рефлектирующей способности суждения также может стать объектом дальнейшего обобщения. Эллиптические орбиты, рассмотренные как данные (ранее сконструированные) объекты, получают свое объяснение, благодаря более общей гипотезе - законам ньютоновской механики.
Можно рассмотреть два аспекта деятельности рефлектирующей способности суждения. С одной стороны - это создание теории. Гипотеза, обобщающая ряд фактов, представляет собой постулат, из которого эти факты получаются в виде его логических следствий. С другой стороны, такая гипотеза есть также результат конструирования. Последнее особенно ясно в примере с законом Кеплера: представление об эллиптической орбите очевидно требует работы способности воображения. Однако без воображения невозможно создать и эмпирические законы иного рода. В математическом естествознании эти законы всегда записываются в виде формул, т.е. в виде знаковых конструкций, создаваемым сообразно определенным правилам. Их построение представляет собой деятельность, которую Кант описал как символическое конструирование (B745). Но такого же рода конструирование представляет собой и вывод одних формул из других - а именно к этому сводится обоснование наблюдаемых фактов в рамках теории. Следовательно деятельность рефлектирующей способности суждения можно рассмотреть как построение определенной структуры, для которой ранее установленные факты (т.е. ранее сконструированные объекты) являются элементами. (См. примечание 7)
Если в "Критике чистого разума" Кант рассматривает лишь способ синтеза суждений, то в "Критике способности суждения" речь идет о решении естественнонаучной проблемы. Оно (решение) состоит в том, чтобы представленные в виде бессвязного агрегата объекты были объединены в рамках целостной структуры. Именно в этой структуре каждый объект должен получить свое место и свое назначение. Поэтому здесь и реализуется принцип целесообразности. Очень важно иметь в виду, что действие способности суждения не является простым формулированием общего правила для ряда единичных объектов (или частных фактов). Нужно не просто сформулировать гипотезу, но сформулировать ее так, чтобы все требуемые факты выводились из нее как частные случаи. Эта процедура вывода должна предугадываться способностью суждения наряду с самим общим правилом. Иными словами способность суждения есть способность предвидеть структуру рассуждения как целого.
Едва ли, кстати, можно утверждать, что столь сложная работа сводится только к действию способности суждения. Очевидно, что наряду с ней здесь действуют и другие способности, а именно рассудок и воображение. Решение естественнонаучных проблем явно подразумевает ту "свободную игру" познавательных способностей, которую Кант связывал с принципом удовольствия (см. [28], c. 85)
Все сказанное мы, вслед за Кантом, отнесли к сфере исследования природы. Однако в той же мере это верно и для математики. Любая математическая задача представляет собой изложение фактов, никак, на первый взгляд, между собой не связанных. Решение задачи состоит в том, чтобы обнаружить и построить некоторую единую конструкцию, в которой все наличные факты получают свое место. Это особенно очевидно при решении геометрических задач, в которых необходимо дополнительное построение, приводящее к созданию более сложной конфигурации, из которой однако легко усматривается ответ на вопрос задачи. Но то же самое происходит и при решении любых задач, где в роли такой конфигурации выступает алгебраический вывод или более сложный математический текст, включающий как знаковые, так и графические элементы.
Уместность описанной гипотетико-дедуктивной процедуры при решении математических задач была довольно подробно описана Д. Пойа в [44] и [45]. На множестве примеров (как учебных, так и исторических) в этих книгах показывается, что важным моментом решения задачи является индуктивная догадка, обобщающая и связывающая воедино множество установленных ранее фактов. Едва ли многие математические теоремы появляются в результате чистого дедуктивного вывода из аксиоматически заданных посылок. Чаще они рождаются в виде догадок, необходимых для решения задачи (или ряда задач). С другой стороны, сколь бы частной ни была задача ее решение является чем-то вроде мини-теории, где ответ оказывается следствием из установленного в виде гипотезы постулата. Немаловажное отличие от естественнонаучной теории состоит в том, что сам этот частный постулат нуждается в доказательстве.
Все сказанное позволяет дополнить приведенное ранее определение существования. Математический объект существует постольку, поскольку сконструирован. Однако математика не есть простое конструирование объектов. Она представляет собой решение задач, а потому каждый объект появляется в ней в рамках более общей структуры, продуцируемой познавательными способностями для того, чтобы получить такое решение. Значит объект существует, поскольку встроен в такую структуру в виде ее элемента. Сама структура предстает как конструкция способности воображения и о ней также может быть поставлен вопрос - в рамках какой еще более общей структуры она существует. Разум не может представить, как налично реализованную, совокупность структур, последовательно включенных друг в друга в виде бесконечной конструкции. Поэтому вопрос о существовании требует для своего полного разрешения введения регулятивных понятий. В математике поэтому неизбежны представления о бесконечных совокупностях, в рамках которых существуют частные математические объекты. Для естествознания таким регулятивом выступает понятие о мире, в котором может быть реализовано сколь угодно много теоретических структур.
Необходимо, впрочем, иметь в виду, что в "Критике способности суждения" нет речи о существовании, тем более о существовании математических объектов. Кантовское решение проблемы существования связано с рассмотрением категорий модальности, чем мы подробно займемся в Главе 3. Но сразу можно сказать, что это рассмотрение не будет полным без учета принципа целесообразности. С другой стороны, мы вплотную подошли к тому пониманию существования, которое связали в Введении с именем Кассирера. В рамках нашей интерпретации кантовского определения рефлектирующей способности суждения всякий объект считается существующим тогда, когда определено его место в некоторой структуре, разворачиваемой согласно установленному правилу (логической форме). Более того, теперь можно яснее сказать о какой структуре должна идти речь - это структура теории, создаваемой на основе индуктивной догадки и объясняющей ранее установленные факты. (См. примечание 8)Впрочем, предъявление структуры не является еще достаточным условием для утверждения о существовании элементов. Необходимо указать особые свойства такой структуры - ниже мы попытаемся разобрать, как решал эту проблему Гильберт.
Примечания
1. Интересный и весьма скрупулезный анализ роли математических образов в философском мышлении дан В.А.Шапошниковым в [60].
2. Латинский перевод аристотелевского термина ousia.
3. Подробное рассмотрение философии математики Беркли предпринято в книге Джессефа [73]. Там, в частности, разбирается теория "репрезентантов" (термин Джессефа), развиваемая Беркли как альтернатива теории абстракции. Речь идет о намерении Беркли доказать, что в математике нет никаких общих понятий, абстрагированных от единичных предметов, а есть лишь те же самые единичные предметы (т.е. идеи), которые выступают в рассуждении как представители целых классов подобных им идей.
Рекомендуем скачать другие рефераты по теме: бесплатные тесты бесплатно, рефераты по медицине.
Категории:
Предыдущая страница реферата | 1 2 3 | Следующая страница реферата