Управление финансами на предприятии
| Категория реферата: Рефераты по финансам
| Теги реферата: реферат эволюция, курсовые работы
| Добавил(а) на сайт: Parmen.
Предыдущая страница реферата | 1 2 3 4 5 6 | Следующая страница реферата
В практике выплаты дивидендов нередко оговаривается величина годового процента и частота выплаты. В этом случае расчет ведется по формуле сложных процентов по подынтервалам и по ставке, равной пропорциональной доле исходной годовой ставки по формуле:
Fn =P*(1+r/m)k*m где r—объявленная годовая ставка; m—количество начислений в году; k—количество лет.
Пример: Вложены деньги в банк в сумме 5 млн. руб на два года с полугодовым
начислением процентов под 20% годовых. В этом случае начисление процентов
производится четыре раза по ставке 10% (20% : 2), а схема возрастания
капитала будет иметь вид:
|Период |Сумма с которой|Ставка (в |Сумма к концу |
|(месяцев) |идет начисление|долях ед.) |периода |
|6 |5.000 |1.1 |5.500 |
|12 |5.500 |1.1 |6.050 |
|18 |6.050 |1.1 |6.655 |
|24 |6.655 |1.1 |7.321 |
Если воспользоваться приведенной формулой, то m = 2, k = 2, следовательно:
Fn = 5 * (1+20%/100%/2)4 = 7,3205 млн. руб.
Пример: В условиях предыдущего примера проанализировать, изменится ли
величина капитала к концу двухлетнего периода, если бы проценты начислялись
ежеквартально.
В этом случае начисление будет производиться восемь раз по ставке 5% (20%:
4), а сумма к концу двухлетнего периода составит:
Fn = 5 • (1 + 0,05)8 = 7,387 млн.руб.
Таким образом, можно сделать несколько простых практических выводов:
. при начислении процентов: 12% годовых не эквивалентно 1% в месяц (эта ошибка очень распространена среди начинающих бизнесменов);
. чем чаще идет начисление по схеме сложных процентов, тем больше итоговая накопленная сумма.
3.5. Начисление процентов за дробное число лет
Достаточно обыденными являются финансовые контракты, заключаемые на период, отличающийся от целого числа лет. В этом случае проценты могут начисляться
одним из двух методов:
. по схеме сложных процентов:
Fn = P * (1+r)(w+f)
. по смешанной схеме (используется схема сложных процентов для целого числа лет и схема простых процентов — для дробной части года):
Рn=Р*(1+r)w*(1+f*r),
Поскольку f< 1, то (1 + f*г) > (1 + г)f, следовательно наращенная сумма
будет больше при использовании смешанной схемы.
Возможны финансовые контракты, в которых начисление процентов
осуществляется по внутригодовым подпериодам, а продолжительность общего
периода действия контракта не равна целому числу подпериодов. В этом случае
также возможно использование двух схем: а) схема сложных процентов:
Fn=P•(l+г/m)m*k•(l+r/m)f б) смешанная схема:
Fn = Р*(1 + r/m) m*k * (1 + f*r), где k — количество лет; m - количество начислений в году; r — годовая ставка; f — дробная часть подпериода.
Пример: Банк предоставил ссуду в размере 120 млн. руб. на 27 месяцев (т.е.
9 кварталов, или 2,25 года) под 16% годовых на условиях единовременного возврата основной суммы долга и начисленных процентов. Проанализировать, какую сумму предстоит вернуть банку при различных вариантах и схемах начисления процентов: а) годовое; б) полугодовое; в) квартальное.
а) в этом случае продолжительность ссуды не является кратной
продолжительности базисного периода, т.е. года. Поэтому возможно применение
любой из схем, характеризуемых формулами, приведенными выше, и значениями
соответствующих параметров: w = 2; f=0,25;r= 16%.
При реализации схемы сложных процентов:
Fn = Р-(1 + r)w+f= 120 *(1 + 0,16)2.25 = 167,58 млн. руб.
При реализации смешанной схемы:
Fn = Р • (1 + r)w * (1 + f * r) = 120 * (1 + 0,16)2 * 1,04 == 167,93 млн.
руб.
б) в этом случае мы имеем дело с ситуацией, когда начисление процентов
осуществляется по внутригодовым подпериодам, а продолжительность общего
периода действия контракта не равна целому числу подпериодов.
Следовательно, нужно воспользоваться формулами, когда базисный период равен
полугодию, а параметры формул имеют следующие значения: k = 2; f = 0,5; m =
2; r = 16%.
При реализации схемы сложных процентов:
Fn=P*(1 +r/m)m*k*(l+r/m)f= 120*(l+0,08)4.5 = 169,66 млн. руб.
При реализации смешанной схемы:
Fn = Р*(1 + г/m) m*k *(1+ f*r/m) = 120*(1 + 0.08)4*(1 + 1/2*0,16/2) = 169,
79 млн. руб
в) в этом случае продолжительность ссуды кратна продолжительности базисного
периода и можно воспользоваться обычной формулой сложных процентов, в
которой n = 9, а r = 0,16/4 = 0,04.
Fn = 120* (1 + 0,04)9 = 170,8 млн.руб.
В зависимости от частоты начисления процентов наращение суммы
осуществляется различными темпами, причем с возрастанием частоты
накопленная сумма увеличивается. Максимально возможное наращение
осуществляется при бесконечном дроблении годового интервала.
3.6. Эффективная годовая процентная ставка
Различные виды финансовых контрактов могут предусматривать различные схемы начисления процентов. Как правило, в этих контрактах оговаривается номинальная процентная ставка, обычно годовая. Эта ставка, во-первых, не отражает реальной эффективности сделки и, во-вторых, не может быть использована для сопоставлений. Для обеспечения сравнительного анализа эффективности таких контрактов необходимо выбрать некий показатель, который был бы универсальным для любой схемы начисления. Таким показателем является эффективная годовая процентная ставка Rе, обеспечивающая переход от Р к Fn при заданных значениях этих показателей и однократном начислении процентов.
Общая постановка задачи может быть сформулирована следующим образом.
Задана исходная сумма Р, годовая процентная ставка (номинальная) r, число
начислений сложных процентов m. Этому набору исходных величин в рамках
одного года соответствует вполне определенное значение наращенной величины
F1. Требуется найти такую годовую ставку Re, которая обеспечила бы точно
такое же наращение, как и исходная схема, но при однократном начислении
процентов, т.е. m = 1. Иными словами, схемы {Р, F1, г, m > 1} и {Р, F1, Rе, m = 1} должны быть равносильными.
Из формулы (4.7) следует, что в рамках одного года:
F1=P*(1+r/m)m.
Согласно определению эффективной годовой процентной ставки:
F1=P+P*Re=P*(l+Rе)
отсюда:
Re=(1+r/m)m-1
Из формулы следует, что эффективная ставка зависит от количества
внутригодовых начислений, причем с ростом m она увеличивается. Кроме того, для каждой номинальной ставки можно найти соответствующую ей эффективную
ставку; две эти ставки совпадают лишь при m = 1. Именно ставка Re является
критерием эффективности финансовой сделки и может быть использована для
пространственно-временных сопоставлений.
Пример: Предприниматель может получить ссуду а) либо на условиях ежеквартального начисления процентов из расчета 75%
годовых, б) либо на условиях полугодового начисления процентов из расчета 80%
годовых. Какой вариант более предпочтителен?
Относительные расходы предпринимателя по обслуживанию ссуды могут быть
определены с помощью расчета эффективной годовой процентной ставки — чем
она выше, тем больше уровень расходов. вариант (а) г(е) = (1 + 0,75/4)4 - 1 = 0,99, вариант (б) r(e) = (1 + 0,80/2)2 - 1 = 0,96.
Таким образом, вариант (б) является более предпочтительным для предпринимателя. Необходимо отметить, что принятие решения не зависит от величины кредита, поскольку критерием является относительный показатель — эффективная ставка, а она, зависит лишь от номинальной ставки и количества начислений.
Понимание роли эффективной процентной ставки чрезвычайно важно для
финансового менеджера, поскольку принятие решения о привлечении средств, например, банковской ссуды на тех или иных условиях, делается чаще всего
исходя из приемлемости предлагаемой процентной ставки, которая в этом
случае характеризует относительные расходы заемщика. В рекламных проспектах
непроизвольно или умышленно внимание на природе ставки обычно не
акцентируется, хотя в подавляющем числе случаев речь идет о номинальной
ставке, которая может весьма существенно отличаться от эффективной ставки.
Рассмотрим простейший пример.
Пример: Рассчитать эффективную годовую процентную ставку при различной
частоте начисления процентов, если номинальная ставка равна 10%.:
m I 2 4 12
365
Re 0,10 0,1025 0,10381 0,10471 0,10516
Различие между двумя ставками может быть гораздо более разительным при заключении некоторых специальных кредитных договоров, например, при оформлении кредита на условиях добавленного процента.
3.7. Понятие приведенной стоимости
Оценивая целесообразность финансовых вложений в тот или иной вид
бизнеса, исходят из того, является это вложение более прибыльным (при
допустимом уровне риска), чем вложения в государственные ценные бумаги, или
нет. Используя несложные методы, пытаются анализировать будущие доходы при
минимальном, “безопасном” уровне доходности.
Основная идея этих методов заключается в оценке будущих поступлений Fn
(например, в виде прибыли, процентов, дивидендов) с позиции текущего
момента. При этом, сделав финансовые вложения, инвестор обычно
руководствуется тремя посылами:
а) происходит перманентное обесценение денег (инфляция);
б) темп изменения цен на сырье, материалы и основные средства, используемые
предприятием, может существенно отличаться от темпа инфляции;
в) желательно периодическое начисление (или поступление) дохода, причем в
размере, не ниже определенного минимума.
Базируясь на этих посылах, инвестор должен оценить, какими будут его доходы
в будущем, какую максимально возможную сумму допустимо вложить в данное
дело исходя из прогнозируемой его рентабельности.
Базовая расчетная формула для такого анализа:
Рекомендуем скачать другие рефераты по теме: профилактика реферат, предмет культурологии.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6 | Следующая страница реферата