Газы и тепловые машины
| Категория реферата: Рефераты по физике
| Теги реферата: шпаргалки по государству и праву, тезис
| Добавил(а) на сайт: Степнов.
Предыдущая страница реферата | 1 2 3 4 | Следующая страница реферата
Уравнение Ван-дер-Ваальса.
В реальных тепловых двигателях используются реальные газы. Как было
замечено поведение их заметно отклоняется, например, при высоком давлении, от поведения идеального газа. Ян Д. Ван-дер-Ваальс (1837-1923) исследовал
эту проблему с точки зрения МКТ и в 1873 году получил уравнение более точно
описывающее поведение реальных газов. Свой анализ он основывал на МКТ, но
при этом учитывал:
A. Все молекулы имеют конечные размеры (классическая МКТ ими пренебрегает)
B. Молекулы взаимодействуют друг с другом всё время, а не только во время столкновений.
Предположим, что молекулы газа представляют собой шарики с радиусом r. Если
считать, что такие молекулы ведут себя подобно твердым сферам, то две
молекулы будут сталкиваться и разлетаться в разные стороны при расстоянии
между центрами равным 2r. Таким образом, реальный объем, в котором могут
двигаться молекулы несколько меньше, чем объем V сосуда содержащего газ.
Величина этого "недоступного объема" зависит от объема молекул газа и от
количества этих молекул. Пусть b представляет собой "недоступный объем" в
расчете на один моль газа. Тогда в уравнении состояния идеального газа
нужно заменить V на V-nb, где n - число молей газа, и мы получим:
P(V-nb)=nRT
Если разделить это выражение на n и считать, что величина v==V/n является
объемом, который занят одним молем газа (v - удельный объем), то получим:
|P(v-b)=RT |(9) |
Это соотношение показывает, что при данной температуре давление
P=RT/(v-b) будет больше, чем в идеальном газе. Это происходит потому, что уменьшение
объема означает, что число столкновений со стенками возрастает.
Следует учесть гравитационное взаимодействие между молекулами, равное:
F~m1m2
, где m1 и m2 - массы молекул.
Внутри газа силы притяжения действуют на молекулу во всех направлениях.
Однако на молекулу, находящуюся на краю газа действует результирующая сила, направленная внутрь. Молекулы, которые направляются к стенке сосуда, замедляются этой направленной результирующей силой и, таким образом, действуют на стенку с меньшей силой; следовательно, эти молекулы создают
меньшее давление, чем в том случае, когда силы притяжения отсутствуют.
Уменьшенное давление будет пропорционально числу молекул, приходящихся на
единицу объема в поверхностном слое газа, а также числу молекул в следующем
слое газа, создающим направленную внутрь силу. Поэтому можно ожидать, что
давление уменьшится на величину пропорциональную (N/V)2. Поскольку N=nNA
можно записать (N/V)2=( nNA/V)2= NA2/v2; следовательно, давление уменьшится
на величину пропорциональную 1/v2. Если для определения давления
используется выражение (9), то получаемое давление нужно уменьшить на
величину a/v2, где a - коэффициент пропорциональности.
Таким образом, мы имеем:
Или
(P + )(v - b) = RT
Это и есть уравнение Ван-дер-Ваальса. Где a и b - для разных газов
различны и определяются путем подгонки для каждого конкретного газа.
Следует заметить, что при низкой плотности газа уравнение Ван-дер-Ваальса
сводится к уравнению состояния идеального газа.
Однако ни ураневние Ван-дер-Ваальса, ни какое другое уравнение состояния, которое было предложено, не выполняются точно для всех газов при любых
условиях. Но тем не менее это уравнение очень полезно, и, поскольку оно
достаточно точно определяет поведение газа, его вывод позволяет глубже
проникнуть в природу газов на микроскопическом уровне.
Список литературы:
1. Д. Джаконли "ФИЗИКА", I том, Москва "МИР", 1989 г.
Douglas C. Gianconli, "General Physics", Prentice-Hall, Inc., 1984
2. Дж. Орир "Популярная Физика", Москва " МИР", 1969 г.
Jay Orear, "Fundamental Physics", John Willey-New York, 1967
3. Кл. Э. Суарц "Необыкновенная физика обыкновенных явлений", I том,
Москва "НАУКА, главная редакция физико-математической литературы, 1986 г.
Clifford E. Swartz, " Phenomenal Physics", the State University of New
York at Stony Brook, 1981
-----------------------
работа
Тепловая энергия
Низкая температура
Высокая температура
работа
Тепловая энергия
Низкая температура
Высокая температура
(= = = 1-
(QH(
W
(QH(-(QL(
(QH(
(QL(
(QH(
Рекомендуем скачать другие рефераты по теме: реферат будущее, объект реферата.
Категории:
Предыдущая страница реферата | 1 2 3 4 | Следующая страница реферата