Измерение неэлектрических величин
| Категория реферата: Рефераты по физике
| Теги реферата: зимой сочинение, безопасность доклад
| Добавил(а) на сайт: Анреп.
Предыдущая страница реферата | 1 2 3 4 | Следующая страница реферата
Однако вскоре оказалось, что архивный метр на самом деле короче сорокамиллионной доли меридиана. Кроме того, копии метра изменились со временем из-за перекристаллизации сплава.
Тогда на помощь пришел другой способ. Ученые открыли, что длина волн света, излучаемого атомами некоторых элементов, гораздо постояннее, чем длина металлического эталона метра. С помощью специальных приборов можно измерить длину эталона, сравнивая его с длиной световой волны. Особенно пригодным для этой цели оказалась длина волны оранжевой линии спектра, испускаемая инертным газом криптоном-86 при пропускании через него электрического тока. Она наиболее постоянна и легко измерима. Длина этой волны принята за естественный эталон длины – метра. Метр теперь определяется так: метр есть длина, равная 1 650 763, 73 длины волны оранжевого излучения криптона-86.
Ну ладно, что такое метр мы разобрались. Но ведь теперь НАМ надо измерять этот метр. Причем МЫ – простые смертные, у которых нет интерференционных компараторов, чтобы проводить измерения с помощью световых волн. Посмотрим, какие же приборы у нас есть в наличии.
Самый простой прибор, который мы используем для измерения длины –
банальная линейка, которую можно купить в любом газетном киоске или
магазине канцтоваров. Линейка представляет собой деревянную, металлическую
или пластиковую полоску, на которой нанесены деления (обычно миллиметры).
Метод измерения линейкой прост, как самогонный аппарат – прикладываем
линейку к объекту (вернее не к объекту, а к поверхности), который надо
измерить и отсчитываем число делений от одного конца измеряемой длины до
другого. Если делений не хватает – бежим в магазин за линейкой большей
длины, если же хватило, тогда, удовлетворившись результатом, делаем
следующее дело.
Линейки обычно не бывают длиннее одного метра. Слишком уж громоздкими
они получаются. Но ведь иногда приходится мерить длины и побольше, скажем
длину земельного участка, оставшегося в наследство от дедушки. Тогда на
помощь приходят рулетки. Рулетка – та же линейка, но выполненная в виде
гибкой ленты из тонкого металла или ткани. Они обычно сматываются в один
моток и для удобства помещаются в специальный корпус. Кроме большей длины, у рулеток есть еще одно достоинство, обусловленное гибкостью. Вы пробовали
померить линейкой, скажем длину окружности цилиндра? Хотите попробовать?
Ну, желаю удачи! А ведь рулеткой это делается очень просто – обматываем
цилиндр вокруг рулеткой и снова наслаждаемся результатом.
Линейка, конечно хорошо. Но вдруг откуда-то падает задача другого плана
– измерить объект маленькой длины, но измерить точно, до 0, 05 мм.
Выбрасываем линейку с рулеткой в мусорку и бежим в магазин за следующим
инструментом – штангенциркулем.
Штангенциркуль представляет собой линейку с миллиметровыми делениями
(основная шкала) и перемещающуюся по ней подвижную рамку. На левом конце
основной шкалы имеются выступы, которые называются неподвижной губкой, а
выступы у рамки называются подвижной губкой. Между губками зажимают
измеряемый предмет. Сначала по штрихам основной шкалы отсчитывают целое
число миллиметров (обозначим l1). Затем по штрихам рамки (нониусу)
определяют длину более точно, для чего считаем какой по счету штрих нониуса
совпал со штрихом на основной шкале и добавляем к l1 номер штриха, умноженный на число, указанное на штангенциркуле. Штангенциркуль позволяет
измерять длину с точностью до 0,01 мм.
В заключение рассказа об измерении длин, хочу вернуться немного назад и рассказать, как измеряется длина с помощью световой волны. Для подобных измерений применяется прибор, который называется интерференционным компаратором.
Интерференционный компаратор представляет собой следующее: на массивной оптической скамье устанавливают два зеркала, одно из которых может перемещаться при помощи винта. Плоскость перемещаемого зеркала точно совмещают с плоскостью неподвижного. На оба зеркала направляют по узкому лучу света от криптоновой лампы, отраженные от зеркал лучи сводят в одну точку и наблюдают за ее освещенностью. Когда плоскости обоих зеркал совмещены точно, разность хода между отраженными лучами равна нулю, а в точке мы увидим светлое пятно. Стоит сдвинуть верхнее зеркало (подвижное) вправо на четверть световой волны, как отраженный от него луч придет в точку с разностью хода на одну полуволну, и в точке не будет видно света – он погасится в следствии интерференции. Если верхнее зеркало сдвинуть вправо еще на одну четверть волны – луч придет в точку с разностью хода в две полуволны и свет в этой точке усилится. Расстояние между поверхностями зеркал будет равно половине длины световой волны. Наблюдатель постепенно сдвигает верхнее зеркало и подсчитывает число усилений и ослаблений освещенности пятна. Когда он насчитает 3 301 527, 46 таких изменений, расстояние между зеркалами можно считать равным 1 метр. На самом деле наблюдатель скорее состарится, пока посчитает 3 млн. изменений, поэтому применяют приборы, которые регистрируют каждое изменение и выдают его на соответствующих индикаторах.
2. Измерение углов.
Теперь поговорим о не менее важной величине, которая называется угол. С измерением углов работники технических специальностей встречаются ничуть не реже, чем с измерением длины.
Во многих случаях требуется, чтобы, скажем, поверхность была абсолютно ровной, относительно поверхности земли. Для этого применяют уровень – металлический брусок с запаянной прозрачной ампулой со спиртом, внутри которой находится пузырек воздуха. Когда уровень расположен параллельно земле, пузырек находится посередине ампулы. На ампуле обычно нанесены деления, поэтому по расположению в ней пузырька можно посчитать угол. Еще более примитивным, но эффективным приспособлением является отвес, представляющий собой гирьку, подвешенную на шнурке. Шнурок под действием силы тяжести будет всегда направлен вертикально и на основе этого можно сделать вывод, скажем о прямизне построенной стены (не наклонена ли она на угол 40().
Для измерения и построения углов на чертежах применяется транспортир – линейка в виде круга или полукруга, с нанесенными значениями углов (обычно в градусах).
Исключительно точными приборами для измерения углов являются
автоколлиматоры. Наиболее чувствительные из них способны фиксировать подъем
или опускание конца площадки длиной 1 м всего на 1 мкм (0,001 мм).
Автоколлиматор основан на принципе отражения лучей от зеркала. Внутри него
помимо системы линз и призм имеется шкала с нанесенным перекрестием и
маленькая лампочка. На детали, угол поворота которой надлежит измерить, закрепляется зеркало, а автоколлиматор устанавливается неподвижно рядом с
этой деталью. Когда лампочка загорается, из прибора выходят лучи света,
«несущие» изображение перекрестия. Лучи, попав на зеркало, отражаются от
него и возвращаются обратно в прибор. Если плоскость зеркала стоит
перпендикулярно оси автоколлиматора, то отраженное изображение перекрестия
точно совпадает с самим перекрестием на шкале и в окуляре виден только один
крест. Если зеркало повернуть, то лучи отразятся под другим углом и в
окуляре будут видны два перекрестия: действительное и отраженное.
Расстояние между ними зависит от угла поворота зеркала. Поэтому встроенный в прибор микрометр, служащий для измерения расстояния между перекрестиями, имеет деления в угловых секундах.
Уровни и автоколлиматоры способны измерять только небольшие углы. Углы в широких пределах могут быть определены с помощью угломера. Он состоит из двух планок, соединенных осью наподобие циркуля. На одной из планок имеется угловая шкала, а на второй — нониус. Деталь охватывается планками, а угол между ними находится по шкале.
Для измерения углов между отверстиями, зубьями и т. п. часто
применяется делительный стол. Это вращающийся в корпусе круглый стол, угол
поворота которого отсчитывается по круговой шкале. Применяемые в столах
отсчетные системы бывают оптическими, индуктивными, механическими или
электронными. Точность угловых измерений на лучших поворотных столах очень
высока, и погрешность не превышает 2-3” (угловых секунд).
3. Измерение массы.
За единицу массы принят килограмм. Появился он одновременно с метром во
Франции. Ученые тогда подумали и решили, что неплохо было бы вместе с
эталоном длины создать и эталон массы, чтобы первому не было скучно :-)
Определялся тогда килограмм, как масса одного литра воды при температуре 4
(С. Правда, это определение также оказалось неточным, однако, в отличии от
эталона длины, эталон массы, сделанный в виде цилиндра из платино-
иридиевого сплава, не изменял свою массу со временем и сравнить эталон с
копиями можно с большой точностью – до нескольких миллиардных долей. Это и
положило определение килограмма – килограмм, это масса международного
прототипа килограмма.
Измеряют массу с помощью весов. Наиболее простые – рычажные – весы представляют из себя две чаши, подвешенных на стержне или пластинке на одинаковом расстоянии от центра, который в свою очередь находится на устойчивой опоре. Для измерения массы, измеряемый предмет кладут на одну чашу весов, а на вторую кладут некоторое число гирь. Как только обе чаши весов будут находиться на одинаковом уровне, считаем общую массу гирь и делаем выводы о массе предмета. Рычажные весы позволяют измерять с точностью до 0,01 г.
Еще один тип весов – пружинные – который можно увидеть в магазинах, представляет собой пластину, подпираемую пружиной. Как только на пластину
помещается предмет, пластина опускается и вместе с ней опускается стрелка
на шкале. По этому же принципу сделаны ручные пружинные весы, которые
представляют собой достаточно жесткую пружину, которая помещается в корпус
со шкалой. К пружине прикрепляется стрелка. Пока к пружине не приложено
усилие, т.е. не подвешен измеряемый груз, она находится в сжатом состоянии.
И вот, мы решили купить у бабульки на базаре мешок картошки, достаем из
кармана наши весы и подвешиваем мешок к пружине. Под действием силы тяжести
пружина растягивается, соответственно перемещается по шкале стрелка. На
основании положения стрелки можно узнать массу взвешиваемого мешка
(убедиться, что бабка нас не обвесила).
Пружинные могут оснащаться дополнительно системой вращающихся шестеренок, что позволяет измерять предметы еще точнее, а последние модели бытовых весов вообще делают электронными, что позволяет узнать массу предмета еще более точно.
4. Измерение температуры.
Задумывались ли вы, что такое температура? Нет? Говоря простым языком, температура показывает степень нагретости тела. Если же сказать по- научному, то с точки зрения термодинамики, температура характеризует энергию молекул данного тела. Чем больше энергия молекул, тем быстрее он движутся, а значит тем больше нагрето тело. В повседневной жизни температуру приходится измерять довольно часто: думаешь одевать куртку или нет – смотришь на термометр за окном; чадо жалуется, что голова болит – сразу лезешь в аптечку за термометром; не хочешь, чтобы рыбки в аквариуме превратились в наваристую уху – поглядываешь на термометр, когда подогреваешь воду.
В Международной Системе единиц температура измеряется в Кельвинах. За 0
К принято такое состояние вещества, когда полностью останавливается
движение молекул вещества. Однако для использования в повседневной жизни
шкала по Кельвину неудобна, поэтому используют шкалу Цельсия. Один градус
Цельсия равен одному градусу Кельвина. За ноль в шкале Цельсия принята
температура тающего льда, за 100 – температура кипящей воды при давлении в
1 атм.
В США и некоторых других странах используется шкала Фаренгейта, появившаяся в 1715 г. За ноль градусов Фаренгейт принял температуру смеси
льда с хлористым аммонием, полагая, что это наинизшая температура на земле.
За вторую точку шкалы Фаренгейт принял температуру тела здорового человека, приписав ей значение 96 (F. Чтобы перевести градусы Фаренгейта в градусы
Цельсия используют формулу:
Рекомендуем скачать другие рефераты по теме: доклад, контрольные работы 2 класс.
Категории:
Предыдущая страница реферата | 1 2 3 4 | Следующая страница реферата