Метод проблемно-структурного моделирования мультимедиа соревнований по традиционному каратэ-до
| Категория реферата: Рефераты по физкультуре и спорту
| Теги реферата: дипломная работа совершенствование, кредит реферат
| Добавил(а) на сайт: Trush.
Предыдущая страница реферата | 1 2 3 | Следующая страница реферата
2. Значения коэффициентов , i, , j, вычисляются, исходя из управляющего проблемного задания с использованием метода случайных чисел внутри управления:
(3)
Чтобы модель функционировала, необходимо задать исходные данные, начальные и конечные условия для спаррингов и для турнира в целом, граничные условия для видеофрагментов (условия связки элементов или ).
Исходными данными являются видеозаписи фрагментов натурных соревнований по каратэ-до ( и ), хранящиеся в ЭВМ-библиотеке.
Элемент отражает некоторую проблемную ситуацию спарринга и является функцией действия спортсменов АКА (каратэка с красным поясом) и СИРО (каратэка с белым поясом).
=(АКА, СИРО).
Для каждого видеофрагмента исходные данные АКА и СИРО определены и остаются постоянными (спортсмены, участники данного фрагмента). В процессе одного мультимедиа спарринга участники АКА и СИРО могут меняться.
Начальные и конечные условия задаются для переменных моделирования (t, ) и для элементов последовательности :
1) t - чистое время спарринга (в соответствии с правилами tнач=0 : tкон=90 с). Для увеличения интенсивности и динамичности КУМИТЭ время мультимедиа спарринга должно быть меньше времени обычного спарринга (например, tкон=40 с или tкон=60 с);
2) - вектор количества очков, набранных спортсменами за спарринг:
. (4)
Данная переменная может не отслеживаться, так как пользователь имеет возможность остановить спарринг при выполнении условия (4);
3) начальным условием для мультимедиа спарринга является видеофрагмент при t=0
(t=0)= , (5)
где - видеофрагмент с проблемной ситуацией: спортсмены АКА и СИРО на исходных позициях ритуал начала поединка команда рефери "СЁБУ ИППОН ХАДЗИМЭ";
4) конечным элементом модели мультимедиа спарринга является видеоэлемент "СОРЕ МАДЕ", соответствующий условию конца поединка:
t=tкон или кон, (6)
т.е. t=tкон или кон). (7)
Начальные и конечные условия для мультимедиа выступления по КАТА задаются в каждом элементе . Видеоэлемент начинается с объявления спортсменом названия КАТА (ритуала начала КАТА) и заканчивается также ритуалом окончания КАТА.
Так как мультимедиа моделирование соревнований является разновидностью моделирования сплошных сред и процессов, то для составляющих элементов модели задаются граничные условия. Каждый видеофрагмент мультимедиа соревнований по КУМИТЭ начинается с команды "СУДЗУКИТЭ ХАДЗИМЭ" и заканчивается командой "ЯМЭ".
Пользователь является активным участником моделируемых мультимедиа соревнований в качестве судьи (ФУКУ-СИН) или рефери (СУ-СИН). Обучаемый, как ФУКУ-СИН, оценивает смоделированную ситуацию и комментирует ее, используя условные обозначения судейских жестов. В качестве СУ-СИН пользователь оценивает мультимедиа спарринг и действия судей на мониторе, а затем выносит решение и заполняет протокол (функции арбитра - КАН-СА).
Примечания: 1. Мультимедиа соревнование по КУМИТЭ является совокупностью мультимедиа спаррингов. 2. Метод проблемно-структурного моделирования позволяет перестраивать и компоновать каждое отдельное мультимедиа выступление по КАТА аналогично модели мультимедиа спарринга.
Выводы
Метод проблемно-структурного моделирования позволяет:
1. Создавать мультимедиа соревнования разного ранга, высокой информационной насыщенности и динамики поединков.
2. Моделировать мультимедиа соревнования в соответствии с некоторым управляющим заданием (для проведения экзаменов и контролирующих аттестаций).
Рекомендуем скачать другие рефераты по теме: ответ 4, менеджмент.
Категории:
Предыдущая страница реферата | 1 2 3 | Следующая страница реферата