Катастрофическая деформация и последующая эволюция высокотемпературной геотермальной системы
| Категория реферата: Рефераты по геодезии
| Теги реферата: фонды реферат, реферат на тему мова
| Добавил(а) на сайт: Jakovcov.
Предыдущая страница реферата | 1 2 3 4 | Следующая страница реферата
Опубликованные разными авторами анализы воды и свободного газа источников Академии Наук показывают, что по комплексу признаков они близки к водам, типичным для высокотемпературных гидротермальных систем [5, 10, 11]. Это углекисло-азотные хлоридно-натриевые воды с относительно низкой (~1,5 г/л) общей минерализацией . Такой состав имели бы гидротермы Долины гейзеров, вдвое разбавленные пресными водами [20]. Все без исключения анализы свободного газа источников Академии Наук обнаруживают высокое, до 24% объеема, содержание кислорода, что является признаком подмешивания насыщенных кислородом воздуха холодных поверхностных вод . По N2/O2 отношению в равновесной с воздухом газовой смеси, раствореенной в холодной воде (1,79), можно вычислить "воздушную" составляющую спонтанного газа. Выделяющийся при выходе гидротерм Академии Наук на поверхность газ, ~ на 50% состоит из воздуха, а его "глубинная" часть имеет типичный для высокотемпературных гидротерм состав: N 2 - 59, CO2 - 36, CH4 - 3,4, Ar - 1,0 % объеема. В свободном газе отмечена повышенная концентрация Rn ~960 Бк/л [21], что также обычно для двухфазных (вода и пар) очагов разгрузки гидротерм. Источники Академии Наук выделяются очень высоким содержанием кремниевой кислоты (>0.,3 г/л), это также свойство высокотемпературных гидротерм. Опаловые отложения кипящих источников - гейзериты распространяются далеко за пределы участков современной разгрузки источников Академии Наук. Под гейзеритами залегают грубообломочные туфобрекчии, сцементированные кремнезеемом и гидроокислами железа. Такие "гидрохимические" брекчии встречаются в береговых обрывах по всему амфитеатру вулкана Академии Наук. Это прямое свидетельство очень продолжительной и существенно более мощной, чем современная, гидротермальной активности в южной части кальдеры. Расход источников Академии Наук в 1984 г., рассчитанный гидрохимическим методом, ~50 л/с, вынос тепла - ~20 МВт. [17]. Глубинная, "базовая" температура термального резервуара по показаниям гидрохимических геотермометров - 240-285о. Восходящие гидротермы здесь примерно на ~50% разбавлены инфильтрационными водами, а вскипание их смеси идеет на поверхности или на глубине всего несколько метров.
На северном берегу озера, в 1 км восточнее истока реки Карымская, на протяжении 200 м были отмечены признаки разгрузки термальных вод: полынья шириной до 50 м, свободная от снега сухая полоса песчаного пляжа шириной 3-7 м, струйки газовых пузырьков, идущие из песчаного дна. У истоков реки также наблюдалась обширная полынья в форме полукруга с радиусом около 100 м. [17]. Эти термоаномалии располагаюется в непосредственной близости от места извержения, происходившего здесь 6500 - 4700 л.ет н.азад [1, 2].
В кальдере Крымскойая в конце плейстоцена -- нначале голоцена открыто разгружались парогидротермы, и обстановка здесь напоминала современную кальдеру Узон с горячими озеерами, кипящими источниками и сольфатарными полями. Кальдерные отложения длительное время подвергались гидротермальной переработке. По мере роста в кальдере конуса вулкана условия разгрузки и инфильтрационного питания подземных термальных вод менялись. Выходы гидротерм были перекрыты лавами и "задавлены" холодными водами, накапливающимися в конусе вулкана.
Современные термопроявления сосредоточились в Термальной котловине, в юго-восточной части кальдеры, на единственном не перекрытом молодыми лавами участке ее дна площадью 2 км2. Сюда же направлен сток термальных вод, разгружающихся под лавами современного вулкана, а также грунтовый и поверхностный стоки метеорных вод кальдеры с площади ~ 40 км2, поэтому котловина сильно обводнена и заболочена. Через котловину протекает река Карымская, дренирующая сток термальных и холодных вод. Это определило специфику условий разгрузки Карымских терм, большая их часть разгружается в тееплых болотах. Преобладают два основных типа источников.
1. Восходящие газирующие источники с температурой от 25 до 42o С и дебитами 0,15 - 0,51 л/с. На выходе их воды отлагают большое количество гидроокислов железа, образуя лимонитовые конусы с газирующими грифонами на вершинах, глубокие водяные воронки и озерки с плоским дном. Суммарный видимый дебит таких источников ~75 л/с.
2. Нисходящие источники с температурой 10-20oС, вытекающие из-под лав Карымского вулкана, в виде мощных родников и обильных ручьев. Такие выходы часто сопровождаются истечением углекислого газа (мофетами). Суммарный дебит этих источников очень велик: ~ 500 л/с.
По химическому составу воды восходящих источников углекислые SO4-HCO3-Cl / Mg-Na-Ca, с минерализацией до 2,8 г/л и рН 6-7. В повышенных концентрациях в них содержатся раствореенный CO2 (~1г/л), SiO2, B, F, Li. В составе спонтанных газов доминирует CO2 ,~90 %. Это ярко выраженные углекислые термы. Высокие концентрации Mg2+ выделяют эти воды в особый, редко встречающийся в природе и очень ценный в бальнеологическом отношении подтип магниевых углекислых вод. Условно они названы "теплыми нарзанами". Воды нисходящих источников относятся к тому же гидрохимическому типу, но они в разной степени разбавлены инфильтрационными водами и частично дегазированы. В их газовой фазе повышается содержание N2 и О2, т. е. появляется воздушная составляющая.
Общая разгрузка термоминеральных вод в кальдере Карымская, с учеетом скрытого стока, составляла 770 л/с, а вынос тепла ~136 МВт . Удельный вынос тепла (плотность конвективного теплопотока), в Термальной котловине 73 Вт/м2, что на три порядка интенсивнее среднего для вулканических областей Камчатки. Такие высокие энергетические параметры типичны для высокотемпературных гидротермальных систем, но не характерны для месторождений углекислых вод.
Г.Ф. Пилипенко была предложена следующая модель формирования Карымских термоминеральных вод, . Гидротермы в кальдере Карымская не выходят на поверхность в виде гейзеров или кипящих источников, и не вскипают на глубине, формируя паро-конденсатную зону, как это происходит на многих геотермальных месторождениях. Восходящий поток перегретых вод из основного геотермального резервуара с температурой 200 -- 250o на глубине 150 -- 400 м (при давлении 15 - 40 атмосфер), минуя процесс вскипания, смешивается с инфильтрационными водами. Возникает промежуточный резервуар - реактор, в котором насыщенные СО2 и Н2S глубинные гидротермы взаимодействуют с обогащенными О2 инфильтрационными водами. Образовавшаяся агрессивная смесь реагирует с водовмещающими породами, претерпевшими гидротермальную переработку на более ранних, высокотемпературных, этапах гидротермальной активности. Тогда в метасоматитах, особенно в приповерхностной зоне аргиллизации, происходило накопление Mg, Fe, Ca, S. Преобразование их в новые минералы идеет при температутурах 140-70o. Магнийсодержащие минералы (хлориты, монтморилониты) образуют разного рода скопления в ассоциации с другими родственными минералами. При температурах ниже 70o в зоне аргиллизации начинается интенсивное выщелачивания минеральных новообразований. В растворы переходят сульфаты и гидрокарбонаты кальция и магния, формируются воды "нарзанного" типа [17].
В составе Карымских нарзанов отчеетливо различаются две компоненты: "глубинная", аналогичная высокотемпературной составляющей терм Академии Наук, и "нарзанная", близкая по составу низкотемпературным углекислым водам, формирующимся в толщах метасоматитов. Их макрохимический состав соответственно: M 2,2 г/л; Cl75 SO415 / Na95 % мг-экв; SiO2>300 мг/л и M 2,9 г/л; HCO360 SO440 / Mg60 Ca25 Na15 % мг-экв; SiO29 баллов. Произошла тектоническая активизация меридиональной разломной зоны. В верховьях р. Карымская на протяжении 2,5 - 3 км заложились новые трещины с раскрытием на поверхности до 2,5 м и амплитудой вертикального смещения 0,5 - 1,5 м [12]. На полуострове Новогоднемий на новых трещинах расположились воронки малых фреатических взрывов и выходы высокотемпературных гидротерм. В Термальной котловине вдоль новых трещин появились мощные газирующие источники и протяжеенные линейные выходы термоминеральных вод (см. рис. 1). Главные удары стихии в январе 1996 г. приняло на себя озеро Карымское.
Карымское озеро после извержения.
Извержение и инициированные им экзогенные процессы привели к катастрофическим изменениям гидрологического, гидрохимического и температурного режима озера. Чистейший абсолютно пресный водоеем диаметром 3,5 км и глубиной до 70 м в считанные часы превратился в резервуар кислой (рН9), высококремнистые (H4SiO4>400 мг/л) источников Академии Наук (см. табл. 3); 2) - азотно-углекислые, сульфатно-хлоридные, натриевые слабо щелочные и нейтральные, высококремнистые (H4SiO4>300 мг/л) новых источников (см. табл. 4 )); 3) - углекислые, хлоридно-гидрокарбонатно-сульфатные, натриево-магниевые, высококремнистые (H4SiO4>200 мг/л), слабокислые (рН 6 - 7) Карымских источников .
Рис. 5 |
Воды Карымского озера также превратились в минеральные, типа "фумарольных терм": кислые (рН700 л/с) делает месторождение термоминеральных вод кальдеры Карымская уникальным. Это самое большое на Камчатке и в России месторождение углекислых термоминеральных вод.
Механизм единовременной инъекции в озеро почти 70 тысяч тонн серы заслуживает специального обсуждения. Самым простым объяснением этого явления может быть привнос в виде SO2 эруптивными газами. В большинстве опубликованных анализов высокотемпературных вулканических и теоретически рассчитанных "магматических" газов весовая концентрация соединений серы (S+SO2+SO3+H2S) составляет n . 10-4 и, очень редко, 10-3. Более 0,95 массы газов приходится на Н2О, остальное - СО2, Н2, галогеноводороды и т. п. [15, 22]. Если эруптивные газы извержения 1996 г. имели аналогичный состав и также более чем на 95% состояли из Н2О, то вместе с 7.107 кг серы в озеро должно было поступить (сконденсироваться) n.1010 -1011 кг водяного пара(107 -108м3 конденсата), что сопоставимо с объемом озера (4,6.108м3). Тепловая энергия этого количества пара, принимая минимально возмможную энтальпию ~2,5.106 Дж/кг, будет составлять n.1016 -1017Дж. С.М. Фазлуллин оценил поглощенную озером энергию в 1016 Дж [24]. Казалось бы, что эта величина близка к вычисленной нами по геохимическим данным, но, в отличие от нашей, она "по умолчанию" включает тепло, отданное твердыми продуктами извержения. При сопоставлении оценок это тепло надо приплюсовать и к нашим цифрам и тогда разница далеко выходит за пределы одного порядка. Не решенной остаеется и проблема водной составляющей (конденсата) гипотетического эруптивного газа: из его объеема n.107 - 108 м3 только n .106 м3 можно было бы "списать" на эруптивные облака (1,3 .106 м3 [14]) и катастрофический паводок (1,1.104 м3 [24]). Следовательно, либо концентрация серы в газе была в десятки раз больше принятой нами, либо привнос серы одновременно осуществлялся и другим агентом.
Одновременно с 70 тыс. тонн серы в 1996 году в озеро поступило 20,4 тыс. тонн Cl-. Это в ~30 раз больше, чем в предыдущие годы, и в ~20, чем в последующие (см. табл. 2, рис. 2 ). Концентрации хлора в магматических газах обычно на 1 - 2 порядка ниже концентрации серы, поэтому его вынос в газовой фазе в больших количествах мало вероятен. Для транспортировки такого количества хлорида в растворе потребовалось бы (2- 4)107м3 воды (0,1 - 0,2 объемаобъема озера), аналогичной по составу парогидротермам Академии Наук.
Приходится предполагать, что при извержении в озере в транспортировке серы и хлора участвовала какая то высококонцентрированная субстанция, возможно, высоко минерализованный флюид глубинных околомагматических зон геотермальной системы.
Тепловая мощность является самым объективным показателем состояния гидротермальной системы, а тепло остаеется единственны бесспорно глубинным компонентом гидротерм. В таблице 8 показаны итоговые величины выноса тепла естественными термопроявлениями Карымско-Академической геотермальной системы. Цифры округлены до мегаватт, поскольку точность измерений не велика. Тем не менее, масштабы и тенденции изменений для всех очагов разгрузки проявляются весьма отчеетливо.
Основной вынос тепла (~85%) раньше происходил в кальдере Карымская. В этой кальдере гидротермальная система отреагировала на извержение и землетрясение несущественным, на 20%, увеличением выноса тепла с последующим сокращением почти до начального уровня в 2000 г. И это несмотря на продолжающееся извержение вулкана Карымскогоий, от кратера которого до источников меньше 3 км. При этом кардинально перераспределились участки разгрузки: большая часть тепла выносится теперь водами через систему трещин, вскрывшихся у восточной границы термального поля. Гидротермические и гидрохимические показатели позволяют уверенно утверждать, что на данном этапе развития магмовыводящая система вулкана не оказывает заметного влияния на состояние гидротермальной системы в кальдере Карымская и, следовательно, не является для неее поставщиком тепла и вещества.
В Кальдере Академии Наук в 1996 г. действующие источники резким скачком вдвое нарастили и продолжают увеличивать вынос тепла. Одновременно у северного берега озера и в истоках реки Карымская феноменальные сейсмо-вулканические явления привели к возникновению новых мощных очагов разгрузки парогидротерм. В результате общая тепловая мощность гидротерм в кальдере Академии Наук увеличилась в 5 раз, с 21 до 113 МВт, и продолжает расти. За 4 года источники Академии Наук усилились на 7 МВт, а новые источники - на 28 МВт. Повсюду, кроме кратера Токарева наблюдается рост температуры выходов и количества кипящих источников. Карымско-Академическую геотермальную систему можно было и раньше относить к"крупным" (157 МВт)1. После событий 1996 г. еее общая тепловая мощность стабилизировалась на новом высоком уровне - 290 МВт. Напомним естественную тепловую мощность крупнейших гидротермальных систем Камчатки: Узонская - 270, Кошелевская - 314, Мутновская - 130 МВт. [3, 77].
Выводы
1. В кальдерах Академии Наук и Карымскаяий в течениие тысяч лет функционирует мощная высокотемпературная геотермальная система. Эксплозивное извержение произошло при внедрении магмы в еее геотермальный резервуар. Огромная масса газо-водного флюида и его тепловая энергия, аккумулированная в геотермальном очаге на относительно небольшой глубине, неизбежно повлияли на подготовку и ход извержения. Извержение 1996 года правильнее относить к типу гидротермально-магматических, а не фреатомагматических.
2. Судя по соотношению количеств серы, хлора и тепловой энергии, поступивших в Карымское озеро во время подводного извержения, в эксплозивном процессе участвовал высокоминерализованный теплоноситель с энтальпией ниже, чем у водяного пара.
3. Извержение вулкана Карымскогийо не повлияло на состав и тепловую мощность источников у его подножия. Следовательно, промежуточный магматический очаг и магмовыводящая система вулкана не связаны непосредственно с гидротермальной системой и не являются для неее поставщиками тепла и вещества.
4. Феноменальным гидрогеологическим результатом сейсмо-вулканических событий 1996 г. стало появление нового мощного очага разгрузки высокотемпературных гидротерм в истоках реки Карымская.
5. В результате событий 1996 года суммарная тепловая мощность геотермальной системы почти удвоилась, при этом вынос тепла в кальдере Карымскойая остался на прежнем уровне, а в кальдере Академии Наук возрос в 7 раз, в основном, за счеет новых источников на северном берегу озера и в истоках реки Карымская . По естественному выносу тепла геотермальная система кальдер Академии наук и Карымская относится к категории крупных и стоит в одном ряду с самыми мощными месторождениями парогидротерм Камчатки.
Рекомендуем скачать другие рефераты по теме: сочинение на тему зима, текст для изложения.
Категории:
Предыдущая страница реферата | 1 2 3 4 | Следующая страница реферата