Анализ функции фильтрационного сопротивления для неустановившегося притока жидкости (газа) к несовершенной скважине
| Категория реферата: Рефераты по географии
| Теги реферата: варианты ответов, страница реферата
| Добавил(а) на сайт: Selidov.
Предыдущая страница реферата | 1 2 3
где ki — угловой коэффициент прямой, который определяется h и от индекса j не зависит.
Анализ зависимости поведения депрессии Dp*i,j от f0 для всех rc >0,01 показывает, что графики этой зависимости можно описать уравнением пучка прямых для любого значения h. Для rc< 0,01 в графиках зависимости появляются начальные нелинейные участки, переходящие при дальнейшем уменьшении параметра f0 (или же при увеличении его обратной величины 1/foj) в прямые для всех значений h<l,0
(рис. 2). При h=l,0 поведение депрессии строго линейно. Кроме того, протяженность нелинейного участка для разных rc при h=const различна. И чем меньше значение безразмерного радиуса rc , тем больше протяженность нелинейного участка (рис. 2).
2. Определим поведение R(rc, h, f0) и ее зависимость от безразмерных параметров rc, h, f0.
Значения R(rc, h, f0) рассчитаны для тех же величин параметров rc, h, f0. которые указаны в пункте 1, обработка результатов также аналогична. Переход от безразмерной функции сопротивления R(rc, h, f0) к относительной R*i,j (rc) осуществлен согласно выражению
. (13)
Анализ поведения R*i,j (rc) и результаты обработки расчетного материала, где установлена ее зависимость от параметров rc, h, f0, частично приведены на рис, 2 (кривые даны пунктиром).
При гc >0,01 для любого hi R*i,j (rc) уже не зависит от f0i .
Из анализа данных расчета и графиков рис. 2 следует: при rc<0,01 в поведении R*i,j (rc) для всех h<l,0 наблюдается нелинейный участок, переходящий с некоторого значения f0 (точка С на графике) в прямую линию, параллельную оси абсцисс. Важно отметить,
что для одного и того же значения rc абсцисса точки перехода нелинейного участка в линейный для R*i,j (rc) имеет то же самое значение, что и абсцисса точек перехода для графиков зависимости Dp*i,j (rc) от ln(l/f0i ) (линия CD). Начиная с этого момента, R*i,j (rc) для данного rc при дальнейшем наблюдении зависит не от времени, а только от hi • И чем выше степень вскрытия, т. е. чем совершеннее скважина,. тем меньше будет значение R*i,j (rc) И при h=l (скважина совершенная по степени вскрытия) функция сопротивления равна нулю. Очевидно, нелинейность Dp*i,j (rc) связана с характером поведения функции сопротивления, которая, в свою очередь, зависит от параметра Фурье. Отметим также, что в точке С (рис. 2) численное значение функции сопротивления становится равным значению фильтрационных сопротивлений (C1(rc, h)) для притока установившегося режима.
Рис. 2. Поведение относительной депрессии и относительной функции фильтрационного сопротивления (rc=0,0014, h=const, f0) при h, равных: 1,1'—0,1; 2,2'— 0,3; 3,3'—0,5; 4,4'—0,7; 5,5'— 0,9; 6,6'— 1,0.
выводы
1. Депрессия на забое несовершенной по степени вскрытия скважины для всех rc < 0,01 имеет два явно выраженных закона изменения: а) нелинейный, который обусловлен зависимостью функции сопротивления от времени и соответствует неустановившемуся притоку сжимаемой жидкости (газа); б) линейный, который соответствует квазиустановившемуся притоку и не связан с функцией сопротивления.
2. Величина R(rc, h, f0) для неустановившегося притока качественно описывает С1(rc, h) для установившегося, и ее численное значение при любом вскрытии пласта всегда меньше численного значения С1(rc, h) при установившемся притоке.
3. Полученное аналитическое решение для неустановившегося притока сжимаемой жидкости (газа) к несовершенной скважине в бесконечном по протяженности пласте преобразовано в прямолинейную анаморфозу, которая позволяет эффективно интерпретировать кривые восстановления забойного давления.
4. Выбор fo, дающего значения Dp*i,j(rc)=1, не влияет на протяженность нелинейного участка, соответствующего неустановившемуся движению, на графики зависимости Dp*i,j(rc) от ln(1/f0i).
ЛИТЕРАТУРА
1. Т е л к о в В. А. Приток к точечному стоку в пространстве и к линии стоков в полу бесконечном пласте. НТС. Вып. 30, Уфа, 1975.
2. Л е о н о в В. И„ Телков В. А., Каптелинин Н. Д. Сведение задачи неустановившегося притока сжимаемой жидкости (газа) к несовершенной скважине к решению уравнения пьезопроводности. Тезисы докладов на XIII научно-техническом семинаре по гидродинамическим методам исследований и контролю процессов разработки нефтяных месторождений. Полтава, 1976.
3. Б а х в а л о в Н. С. Численные методы. Изд-во «Наука», М., 1974.
Скачали данный реферат: Kozin, Будников, Dominik, Jusupov, Werbina, Негин, Azar.
Последние просмотренные рефераты на тему: реферат по культурологии, александр реферат, компьютерные рефераты, банк рефератов.
Категории:
Предыдущая страница реферата | 1 2 3