Флюидодинамическая концепция формирования месторождений полезных ископаемых (металлических и углеводородных)
| Категория реферата: Рефераты по географии
| Теги реферата: особенности курсовой работы, образ жизни доклад
| Добавил(а) на сайт: Стефания.
Предыдущая страница реферата | 1 2 3 4 5 6 7 | Следующая страница реферата
В орогенных областях сопряженно развиваются два процесса: подъем к поверхности тектонически напряженных блоков пород и формирование вдавленных блоков (рамповые грабены). В первом случае происходит не только общее падение напряжения, но и более быстрое сокращение вертикальной составляющей тензора напряжений, возникает девиатор напряжений с вертикально направленными растягивающими усилиями. В результате мы имеем деформацию вертикального сдвигания при дополнительном горизонтальном сжатии. Это приводит к образованию трещин: горизонтальных - отрыва и сколовых - под различными углами к поверхности. По мере подъема массива и релаксации напряжения система <разваливается>: в поднятых блоках трещины отрыва становятся сначала наклонными, а затем вертикальными.
Во втором случае имеет место зонный орогенез (по В.К. Кучаю). В литосфере орогенов формируются астенолинзы. Под хребтами-поднятиями давление на астенолинзы больше, чем в соседних депрессиях. Вещество линз перетекает из поднятий в кору депрессий. Гранитные и базальтовые литопластины (а только они передают горизонтальное сжатие) под поднятиями более мощные, чем под депрессиями. На границах этих структур сплющиваются и утолщаются края литопластин, в результате здесь имеют место аномально высокие скорости движения. Происходит процесс приращения поднятий за счет предгорий.
Деформационные процессы в коре орогенов наиболее удачно можно объяснить с позиции модели всестороннего сжатия, разработанной В.К. Кучаем. Во вдавленных блоках на границах поднятий и депрессий накапливается большая плотность упругой энергии. В перенапряженных породах в результате всестороннего сжатия при образовании поверхности разрыва начинается процесс самопроизвольного хрупкого разрушения. Из самых общих представлений теории поля следует, что в перенапряженных сжатием породах достаточно возникновения незначительных добавочных девиаторных напряжений, чтобы осуществился переход энергии объемной деформации в энергию изменений формы или переход потенциальной энергии в кинетическую. Формируется очаг множества лавинообразно развивающихся хрупких трещин. Положение таких очагов совпадает с позицией центров разномасштабных землетрясений. Чем более прочные и упругие комплексы пород, чем больше их объем, и чем больше в них накопилось упругой энергии, тем более значительные массы пород будут брекчированы. Вертикальный диапазон образования таких брекчий в зависимости от конкретных геологических условий в орогенах колеблется от 5 до 25-30 км.
Подобные представления согласуются с геологическими данными. Находят объяснение образование мощных тел и зон объемных брекчий с <висячими>, без признаков смещения, обломками и разрушение прежде всего наиболее прочных, упругих, малопористых пород на плутоногенных гидротермальных, скарновых, меднопорфировых, некоторых магматогенных и других эндогенных классах и типах месторождений.
Высказанные нами представления несколько дополняют идею о тектоно-кессонном геодинамическом эффекте, развиваемую П.М. Горяиновым и И.В. Давиденко (1979). Они объясняют все многообразие не только брекчиевых образований, но и бескорневых тел гранитов, пегматитов явлениями либо резкого, либо постепенного падения давления при подъеме блоков пород к поверхности. Вероятно, этот механизм образования геологических структур и деформации пород существует, но он не универсален и ограничен масштабами скоростей подъема, физико-механическими свойствами пород, типами и интенсивностями региональных полей напряжения и рядом других менее значимых факторов.
Таким образом, на границах вдавленных и поднимающихся блоков пород в упругоперенапряженных зонах с большим запасом энергии на глубинах 5-25 км формируются тела брекчий. В приповерхностных зонах при условии быстрого вертикального подъема тектонических блоков протекают процессы релаксации упругих напряжений, возникает анизотропное поле напряжений и формируется структурный парагенезис литостатической разгрузки (рис. 6). Он представлен горизонтальными трещинами отрыва, двумя системами трещин скола, чешуйчатыми кулисными отрывами, изогнутыми, дугообразными разрывами, которые оконтуривают удлиненные будинообразные блоки пород. Особенности этих дизъюнктивов - их полная сопряженность, отсутствие смещений, перетертого милонитового материала, следов участия флюидной фазы. Такие разрывы рассекают без смещения самые разнообразные породы вне зависимости от литологии и текстурно-структурных особенностей слагающих поднятый блок магматических, метаморфических и осадочных комплексов.
Эндогенные рудно-магматические системы
Системы этого типа распространены во всех глобальных структурах земной коры. Среди них наиболее изученными и уникальными по масштабам накопления рудного вещества выделяются: гипербазито-базитовые медно-никелевые, гранитоидные полиэтапные оловорудные, кимберлитовые и лампроитовые алмазоносные, базальтоидные субмаринные колчеданные и ряд других (рис. 7, 8).
Гипербазит-базитовые медно-никелевые системы. К этому типу относятся крупнейшие в мире рудные узлы, ассоциированные с расслоенными ультраосновными - основными комплексами (Садбери в Канаде, Бушвельд в Южной Африке, Норильск на Северо-Западе Сибирской платформы и др.). Все они приурочены к региональным глубинным разломам, ограничивающим крупные стабильные жесткие мегаблоки земной коры; развиваются на коре континентального типа; масштабы оруденения коррелируются со степенью дифференциации мантийных расплавов; процессы формирования рудоносных плутонов протекают в обстановке растяжения и с высокой скоростью; рудные районы характеризуются полиэтапностью развития и многоярусностью строения.
Норильская рудно-магматическая система, изученная О.А. Дюжиковым, В.В. Дистлером и др. (1986), приурочена к Приенисейскому мегаблоку, ограниченному крупнейшими мезозойскими внутриконтинентальными рифтами Земли - Енисейско-Хатангским и Западно-Сибирским. Главной магморудноконтролирующей структурой района служит Норильско-Хараелахский глубинный разлом (рис. 9).
Рудно-магматическая система формировалась в процессе миграции гипербазит-базитового расплава в южном направлении на расстояние в десятки - первые сотни километров. Вкрапленные и массивные руды приурочены к полнодифференцированным сульфидным гипербазит-базитовыми интрузивам, локализованным в подошве платформенного чехла.
Вулканогенно-рудные системы
Вулканогенно-рудные системы (центры) представляют собой долгоживущие (миллионы - десятки млн. лет) обычно изометричные в плане (диаметр 1-10 км) участки магматической и металлогенической активности (Яковлев, Авдонин, Старостин, 1986). По вертикали оруденение распространено до глубин 10-12 км. Выделяются два типа рудно-магматических центров: вулканический открытый и глубинный магматический закрытый.
Вулканические открытые системы представлены тремя подтипами: молибденпорфировым, колчеданным субмаринным и карбонатитовым (рис. 7).
Медно-молибденпорфировые вулканические и вулкано-плутонические системы обычно располагаются в пределах вулкано-плутонических дуг активных окраин континентов (Митчелл, Гарсон, 1984). Они пространственно и генетически связаны с гипабиссальными интрузиями монцонитового, диоритового и гранодиоритового составов. В глубинных частях систем развита собственно медномолибденовая минерализация. В слабоэродированных структурах сохранились и верхние вулканические (жерла, некки, кальдеры) элементы магматических систем с присущими им проявлениями ртути, свинца, цинка и редких земель. Примерами таких систем могут служить рудные районы в западной части синклинория Янцзы (Китай). Одно из них - Туншанькоу, детально изученное Чжэн Ланьчжэ (1995), относится к медно-молибденпорфировому типу. Здесь рудные тела приурочены к эндо- и экзоконтактам юрско-мелового склоняющегося в восточном направлении штока гранодиоритпорфирового и кварц-монцонитового состава, прорывающего толщу триасовых карбонатных пород (доломитов, известняков, мраморов).
Особенностью формирования месторождения является тесное сочетание скарновых и высокотемпературных плутоногенных гидротермальных процессов. В эндоконтактах штока преобладает медно-порфировое, а в экзоконтактах - типичное медное магнезиально-скарново-жильное оруденение. Основная масса руд образует почти сплошное тело в форме усеченного конуса на контакте интрузивных пород с доломитовыми мраморами. Кроме того, внутри штока выделяются многочисленные мелкие линзо-, пласто- и штокообразные тела вкрапленных медных и молибденовых руд, а во вмещающих мраморах - как метасоматические залежи, так и одельные жилы и жильные штокверковые зоны.
В истории формирования месторождения выделяются два главных этапа - прототектонический и постмагматический. С первым этапом связано внедрение интрузивного комплекса в Яншаньскую эпоху (153 -127 млн. лет) в триасовые отложения, испытавшие четыре фазы складчатости, образование прототектонических структур внутри интрузивного штока и сопутствующих дизъюнктивов во вмещающих мраморах. Второй этап протекал в режиме литостатической разгрузки, сопровождался полистадийной флюидной постмагматической деятельностью и формированием метасоматической зональности (филлизититовые кварц-серицитовые и пропилитовые зоны) и рудообразованием.
Установлен отчетливый структурно-петрофизический контроль оруденения. Ведущую роль в формировании рудовмещающего структурного парагенезиса играли две резко контрастные по физико-механическим свойствам группы пород: карбонатная (доломиты, известняки, мраморы) и интрузивная (диориты, гранодиориты, кварцевые монцониты и др.). Для карбонатной группы характерны повышенные упруго-прочностные свойства (Е=7,15х104 Мпа, Тв = 163 НВ, ( = 435 К, Кпк = 0,73) по сравнению с породами интрузивной группы (Е = 5,8х104 Мпа, Тв = 135 НВ, ( = 403 К, Кпк = 0,20). Это различие привело к возникновению на границе таких контрастных петрофизических сред трещинно-брекчиевых зон, контролировавших движение рудоносных флюидных потоков. В свою очередь, эти потоки энергично метасоматически перерабатывали как интрузивные, так и осадочные породы. В результате формировались оруденелые блоки, отличающиеся от вмещающих слабоминерализованных пород повышенной плотностью и упругостью (Е = 7,25х104 Мпа, ( = 438 К, Кпк = -0,83). На всех стадиях рудного процесса они были весьма хрупкими (Тв = 115 НВ) и неоднородными (коэфициент неоднородности Кн = 0,28) образованиями.
Практически все рудные тела локализованы в пределах зоны, оконтуренной изолиниями 150 НВ. Для руд характерны минимальные значения твердости (115 НВ) и максимально высокие температуры Дебая (438 К), величины модуля упругости (Е = 7,25х 104 Мпа) и Кпк (-0,83).
Проведенное исследование позволило установить сложную полигенную и полихронную природу месторождения Туншанькоу. Оно формировалось в обстановке воздымающихся орогенических движений в раннемеловую эпоху. Внедрение гранодиоритовой магмы в триасовые карбонатные толщи происходило в региональном поле напряжений, характеризующихся субмеридиональным сжатием и широтным растяжением. Выделены два основных этапа формирования месторождения. В ранний прототектонический этап действовал механизм поперечного изгибания при вертикальной ориентировке оси (3. В этот этап происходили высокотемпературные метасоматические измененения: калишпатизация, ороговикование, раннее сканирование.
Образовались небольшие тела вкрапленных молибденитовых руд. Наиболее интенсивно рудообразование протекало во второй постинтрузивный этап. В это время начал действовать механизм литостатической разгрузки, произошла переориентировка поля напряжений. Наибольшее растяжение отчетливо стало действовать в субвертикальном направлении. Возникли пологие трещины отрыва и сопряженные с ними трещины скалывания. Активно функционировала гидротермальная система, контролировавшаяся меридиональными контактами гранодиоритового штока. Образовались главные порфировые (в эндоконтакте) и скарновые (в экзоконтакте) рудные тела.
В металлогенической провинции средней и нижней части бассейна реки Янцзы перспективными на обнаружение медных и медномолибденовых месторождений сложного порфирово-скарнового типа являются меридиональные зоны тектонических нарушений, приподнятые блоки триасовых карбонатных пород (горст-антиклинали), западные и восточные контакты интрузивных штоков, участки хрупких метасоматически переработанных как интрузивных, так и осадочных пород.
В связи с тем, что образование месторождений протекало в открытых структурах растяжения промышленный интерес представляют и глубинные корневые части рудно-магматических систем. Не вскрытые эрозией интрузии, их верхний чехол из карбонатных пород перспективен на скарновое медное оруденение.
Колчеданоносные субмаринные системы образовывались непрерывно в течение всей геологической истории, начиная с раннего архея и кончая современным колчеданным рудогенезом. Их ормирование протекало всегда в условиях растяжения. Установлено четыре основные региональные геотектонические обстановки колчеданообразования: островодужная, спрединговая (срединно-океанические хребты), тыловодужная и глубинно-разломная (трансформные системы разломов) (Старостин, Дергачев, 1989). Промышленное оруденение ассоциируется с субмаринной в разной степени дифференцированной липарит-базальтовой формацией.
Мощность и глубинное строение земной коры (неоднородность, расчлененность, магмонасыщенность, соотношение различных геолого-плотностных слоев) определяют особенности формирования магматических очагов, эволюцию вулканизма, петрохимические черты рудоносных комплексов и, в конечном итоге, состав руд месторождений. Кислые члены дифференцированных формаций, образующиеся в результате деятельности синхронных или последовательных периферических очагов разных уровней, более автономны, разнообразны по фациальному составу, представлены обычно локальными вулкано-тектоническими структурами, контролирующими рудные залежи. Неоднородность земной коры, определяющая продолжительность, характер развития вулканических очагов, миграцию вулканизма, в значительной степени обусловливает металлогеническую зональность палеовулканических провинций.
Рудоносные вулкано-тектонические структуры центрального типа весьма характерны для обширной группы месторождений руд цветных и благородных металлов. При этом наибольшее число рудных объектов приурочено к длительно развивающимся многостадийным магматическим центрам, которые, в зависимости от особенностей вулканизма, истории тектонического развития и эрозионного среза, могут быть представлены поверхностной, суб- и гиповулканической зонами.
Ведущий деформационный механизм на различных этапах формирования подобных центров - поперечный изгиб. На его реализацию в конкретных условиях оказывает влияние большое разнообразие геодинамических режимов. Последние обусловлены как формами и размерами отдельных перемещающихся геологических тел, так и сочетаниями их в пространстве. Наиболее простым и многократно исследованным случаем является поле напряжений, существующее в окрестностях круглого жесткого штампа, перемещающегося в вертикальном направлении в однородной среде. Аналоги подобных образований в длительно развивающихся центрах - это отдельные магмовыводящие каналы, экструзивные, субвулканические и гиповулканические тела, гидравлические купола, блоковые складки и другие структурные формы. Примерами подобных центров могут служить медноколчеданные центры в Казахстане: Зырьяновский (Малеевские структуры), Лениногорский (Риддер-Сокольные структуры), Майкаинский; в Болгарии - Челопечский.
Рекомендуем скачать другие рефераты по теме: доклад по обществознанию, quality assurance design patterns системный анализ.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6 7 | Следующая страница реферата