
Математические основания геоморфологии (по статье А.С. Девдариани)
| Категория реферата: Рефераты по геологии
| Теги реферата: тесты бесплатно, курсовая работа по предприятию
| Добавил(а) на сайт: Vikashev.
Предыдущая страница реферата | 1 2 3
Динамика
рельефа: .
Изучается
развитие рельефа при активном или пассивном воздействии рельефообразующих
факторов. Примером в терминах континуальной математики может служить уравнение
развития продольного профиля реки: , где H — высота точки профиля, A — постоянная, зависящая от его начальных очертаний; они
представляют собой геометрические характеристики рельефа, принимающие значения
на множествах G1 и
G2 соответственно; t — время, принимающее значения на
множестве T; F(x) — функция расстояния x, принимающего значения в одномерном
евклидовом пространстве P; m —
постоянная, зависящая от рельефообразующих факторов, принимающих значения на
множествах B1, B2, …, Bl; e — основание натуральных логарифмов. Все
перечисленные характеристики принимают значения из множества действительных
чисел, и приведенное уравнение представляет собой конкретную форму
функционального соответствия
в многомерном
евклидовом пространстве состояний
Рассмотрим бесконечную упорядоченную последовательность элементов времени:
Знак указывает, что
стоящий перед ним элемент предшествует элементу, стоящему после. Для элементов
множества действительных чисел знак
равносилен знаку <
(меньше), а
— знаку >
(больше). Для элементов времени
означает раньше, а
позже. В указанной
последовательности важнейшую грань образует момент (или промежуток) времени tн, в который произведены (или начаты)
наблюдения за состоянием рассматриваемой системы. Для последующих элементов
времени,
, состояния рельефа определяются методами интерполяции и
экстраполяции, а для предыдущих,
— восстанавливаются
историческим и методами, на основании сохранившихся свидетельств прошлых
состояний. В соответствии с этим в каждом из разделов геоморфологии следует
различать задачи:
изучения
современного и прогнозирование будущего рельефа, определяемые условием ;
изучения
прошлого рельефа, определяемые в кинематике и динамике рельефа условием , а в геометрии и статике рельефа — условием
.
Пограничные
задачи геоморфологии делятся на пограничные задачи геометрии рельефа, когда , и пограничные задачи кинематики рельефа, когда
при соблюдении, разумеется условия (9).
Список литературы
Журнал «Геоморфология», А.С. Девдариани, №1, 1971г., с.46-55.
Автором была использована литература:
Геология и математика. «Наука», Новосибирск, 1967.
Девдариани А.С. Итоги науки. Геоморфология, вып.1. Математические методы. Изд. ВИНИТИ, М., 1966.
Косыгин Ю.А., Воронин Ю.А., Соловьев В.А. Опыт формализации некоторых тектонических понятий. Геол. и геофиз., 1964, №1.
Косыгин Ю.А., Воронин Ю.А. Геологическое пространство как основа структурных построений. Статья 1. Геол. и геофиз., 1965, №9.
Родоман Б.Б. Математические аспекты формализации порайонных географических характеристик. Вестн. МГУ. География, 1967, №2.
Стинрод Н., Чинн У. Первые понятия топологии. «Мир», М., 1967.
Уитроу Дж. Естественная философия времени. «Прогресс», М., 1965.
Шиханович Ю.А. Введение в современную математику. «Наука», М., 1965.
[1] Автор не накладывает никаких ограничений на множества, входящие в прямое произведение W, и допускает, в частности, что они могут быть неупорядоченными. Поэтому множество векторов, образующих W, не является пространством в строгом математическом понимании. Однако автору представляется, что в географических и геологических целях такое расширение математического понятия пространства было бы весьма удобным. И это не шло бы в разрез с общей тенденцией расширения понятия пространства в математике от трехмерного евклидова к многомерным евклидовым, затем к метрическим и далее к топологическим пространствам.
Скачали данный реферат: Каипов, Полиект, Umberg, Amos, Sijakaev, Акчурин, Tjannikov.
Последние просмотренные рефераты на тему: предмет культурологии, реферат великая, диплом образец, вулканы доклад.
Категории:
Предыдущая страница реферата | 1 2 3