Особенности вулканизма и геодинамика области тройного сочленения Буве
| Категория реферата: Рефераты по геологии
| Теги реферата: доклад на тему физика, реферат газ
| Добавил(а) на сайт: Inozemcev.
Предыдущая страница реферата | 1 2 3 4 5 6 | Следующая страница реферата
Большая часть базальтов составляет группу, образующую самостоятельные непротяженные тренды на этих вариационных диаграммах. Не достигая высоких степеней дифференциации, базальты из этой группы имеют тенденцию к более быстрому накоплению калия и фосфора, чем гавайиты острова Буве, при этом для данных коэффициентов фракционирования содержания K2O в них наиболее высокие среди всех базальтов района тройного сочленения. Для данной группы также свойственны в целом более низкие значения CaO и глинозема и более высокие TiO2, а по вариациям в содержании натрия, а также по содержанию литофильных элементов-примесей Rb, Th, Nb, Ta [Симонов и др., 2000] и отношениям (La/Sm)n 1,8-2,3, (Nb/Zr)n 1,0-1,6 они близки к вулканитам хребта Шписс. В то же время по существенно более высокому содержанию хрома и никеля базальты данной группы резко отличаются от базальтов и острова Буве, и хребта Шписс.
Небольшая группа базальтов с заметно более низкими содержаниями TiO2, K2O и P2O5 не образует собственного тренда, не обнаруживая каких-либо закономерностей в вариациях составов. Наиболее близки они к обогащенным толеитам типа T-MORB.
Аномально высокие значения K2O (до 3,35%) в некоторых образцах станций S1824, S1825 и S1835 при низкой железистости обусловлены высокой степенью их вторичных изменений.
Подводная гора Шона по данным драгирования сложена разнотипными вулканитами (табл.8). Наиболее широко здесь распространены породы с очень низкими содержаниями TiO 2 (0,6-1,2%). В совокупности они образуют пологий и протяженный тренд дифференциации от базальтов (обр. G9608/25, 27, 51, 55, G9609/3, 5, 11) через андезиты (обр. G9608/5, 13, 24, 29, 31, 37, 45) и дациты (обр. G9608/28, 43, 58) к липаритам (обр. G9608/8, G9609/12). Этот тренд резко отличается от трендов составов вулканитов хребта Шписс и острова Буве. При росте коэффициента дифференциации, сопровождающемся быстрым возрастанием содержания кремнекислоты, происходит очень медленное накопление TiO2 (до 1,2%), K2O (до 0,5%) и P2O5 (до 0,15%), которые в целом остаются низкими. Собственно базальты из этой группы имеют в сравнении с базальтами хребта Шписс несопоставимо более высокие концентрации хрома (около 500г/т), более высокие содержания ванадия и скандия, заметно более низкие значения литофильных элементов (Sr, Zr, Y, Nb) и близкие содержания никеля. По мере дифференциации содержания Cr, V, Sc быстро уменьшаются, напротив, концентрации Sr, Zr, Y, Nb постепенно возрастают. Для этих вулканитов характерны низкие (Nb/Zr)n отношения 0,1-0,5. Среди этих вулканитов преобладают сильно пористые образцы типа шлаков, вулканических бомб, пемзы, однако есть и типичные среднепористые и слабо пористые породы. Они в основном свежие, некоторые сильно окислены.
Остальные вулканиты горы Шона представлены только базальтами, среди которых выделяется несколько малочисленных групп. Сильнопористый образец G9608/15 петрохимически близок к базальтам хребта Шписс, но имеет очень высокие концентрации хрома (535г/т), что более сближает его с базальтами рифтовой долины АфАХ. Два из изученных базальтов (обр. G9608/45, 52) близки к обедненным разностям толеитов. Для них также характерны низкие содержания TiO2, но в отличие от основной группы вулканитов горы Шона они имеют еще более низкие концентрации калия. К слабо обогащенным разностям толеитов относятся базальты G9608/4 и G9609/2, которые отличаются от двух предыдущих групп более высокими концентрациями K2O (0,40%) и TiO2. Встречены два необычных состава базальтов (обр. G9608/3, 46). Первый из них - существенно оливин порфировый базальт, что и нашло отражение в низких содержаниях кремнекислоты и глинозема и в аномально высоких концентрациях хрома и никеля. По уровню и соотношению в нем содержаний калия и фосфора он близок к обогащенным базальтам станции G9610. По этим параметрам к базальтам этой станции близки и измененные образцы G9608/24, 46. Следует отметить, что все базальты, отличающиеся от основной группы вулканитов горы Шона практически непористые, часть из них заметно изменена, некоторые несут признаки непосредственного отрыва от склона.
В пределах линейного поднятия, протягивающегося от южной части хребта Шписс в сторону острова Буве и, видимо, структурно связывающего их, поднято несколько базальтов существенно различного состава (станция G9622). Большинство образцов это сильно дифференцированные высоко железистые (FeO/MgO = 2,5) базальты, обогащенные TiO2 (3,8-3,9%), K2 O (1,7-1,8%), P2O5 (0,6%), Na2O (3,9-4,3%) (табл.8). Отношения (Nb/Zr)n в них равны 1,3. По этим и другим параметрам рассматриваемые базальты, как видно из графиков вариаций составов (рис.2-4), очень близки к тем базальтам рифтовой долины АфАХ, которые отличаются повышенными концентрациями K2O и P2O5. При этом следует отметить, что образец G9622/2 имеет очень высокие концентрации хрома.
Исключением является образец G9622/6, не выделяющийся среди других представителей этой группы ни характером вторичных изменений, ни текстурой. Он имеет низкие содержания TiO2 (0,88%), Na2O (2,18%), K2O (0,28%), P2O5 (0,07%) и железистость 1,8, что сближает его с вулканитами поднятия Шона.
Отличительной особенностью вулканических пород, драгированных на склонах разлома Буве, является чрезвычайное разнообразие петрографических типов, поэтому и петрохимические составы пород сильно различаются. В целом это слабо и умеренно дифференцированные породы с несколько пониженным содержанием SiO2 (44-46%) [Симонов и др., 2000]. Степень вторичных изменений (п.п.п. 0,8 до 1,8%) соответствует таковой в базальтах САХ. Из диаграммы TiO2 - FeO/MgO (рис.2) видно, что базальты дают два существенно различных тренда. Подавляющее большинство попадает на тренд дифференциации базальтов САХ с вариациями TiO2 от 1,0% до 2,0%. Для них характерны отношения (La/Sm)n 0,7-1,2 и (Nb/Zr)n 0,6-1, не выходящие за пределы составов базальтов САХ. Поведение базальтов второй группы соответствует тренду характерному для базальтов горы Шона, где содержания TiO2 не превышают 1% при FeO/MgO 1,6-2,6. Отношения (La/Sm)n и (Nb/Zr)n в одном из представляющих эту группу образцов составляют соответственно 0,93 и 0,81.
В некоторых базальтах разлома Буве отмечается относительно большое количество вкрапленников плагиоклаза. Это нашло отражение в их химическом составе - в повышенных концентрациях CaO и Al2O3.
Основная часть базальтов из Восточной области дислокаций (табл.8), драгированных на станции G9617, характеризуется низкой степенью фракционирования 1,2-2,2 при высоком содержании TiO2 (в среднем 2,3-2,4%). Низкие K2O (0,1-0,3%) и P2O5 (0,1-0,25%), (La/Sm)n и (Nb/Zr)n соответственно 1,2 и 0,7-0,9 сближают эти базальты с таковыми из района САХ. Все эти базальты отличаются широким развитием хлорита и ряда других относительно высокотемпературных вторичных минералов, сформировавшихся при повышенных Р-Т условиях, вероятно, в глубине базальтового разреза. Это отразилось и на их составе, для данных базальтов свойственно пониженное содержание CaO и у некоторых повышенное - натрия.
Исключение составляют образцы G9617/01 и G9617/06 с существенно повышенным K2O (1,0-1,4%), P2O5 (0,3-0,4%), (La/Sm)n и (Nb/Zr)n соответственно 2,5 и 1,5-1,6. В этом отношении они близки к составу базальтов из рифтовой долины АфАХ, но по крайне низким концентрациям хрома совпадают с таковыми хребта Шписс и острова Буве. Эти базальты отличаются от основной группы и по типу вторичных изменений. В них развиты в небольшом количестве только продукты низкотемпературных преобразований.
Базальты в пределах самого восточного сегмента АмАХ можно разделить на 2 группы. Первая характеризуется единичными образцами G9604/54, G9602/03 с повышенными содержаниями TiO2 (2,2-3,1%) и P2O5 (0,2-0,4%) при относительно низкой железистости - 1,6-1,9 (табл.8), и (Nb/Zr)n 0,4-0,6, (La/Sm)n 0,9-2,1. В целом они близки к слабо обогащенным базальтам южного окончания САХ. В этих базальтах относительно широко развит хлорит. Основная группа базальтов в различной степени дифференцирована (FeO/MgO 1,0-2,4), при этом содержания TiO2 (0,8-1%) очень низкие, а K2O (0,4-0,53%), P2O5 (0,08-0,09%), (Nb/Zr)n 0,3. Эти составы ложатся на тренд дифференциации вулканитов горы Шона. Среди них обнаружены и более кислые разности с SiO2 62%, которые также попадают на этот тренд. Необходимо отметить, что в целом эти базальты менее изменены или даже свежие. Они имеют различный облик от непористых до сильно пузыристых, похожих на вулканические бомбы.
Базальты, поднятые в пределах поднятия, находящегося между двумя трогами, отходящими от южного окончания САХ (станция G9610), относятся к умеренно и сильно дифференцированным породам, FeO/MgO в которых варьирует от 1,2 до 4 (табл.8). Они подразделяются на 2 группы. Первая (обр. G9610/1, G9610/12) характеризуется низкими содержаниями литофильных элементов (K2O 0,3%, P2O5 0,1-0,2%) и низкими (Nb/Zr)n отношениями, соответствуя базальтам N-MORB САХ. Вторая группа существенно более обогащена K2O 1,1-1,4%, P2O5 0,7-0,9% и имеет повышенные (Nb/Zr)n 1,32. При этом в образцах G9610/8, G9610/21, G9610/31 при низкой степени фракционированности отмечаются аномально высокие содержания P2O5 (0,7-0,8%), Sr (500-600г/т). Их другая особенность - слабые вариации содержаний TiO2, Al2O3 и CaO при дифференциации. Составы обогащенных базальтов на вариационных диаграммах образуют самостоятельные тренды, не совпадающие с таковыми для вулканитов хребта Шписс и острова Буве. По содержаниям Sr, Rb, Ba они попадают в поля составов базальтов аномалии 12-14oв.д. [Le Roex et al., 1992], но отличаются более низкими концентрациями Y и Nb. Базальты двух петрохимических групп различаются и по характеру вторичных изменений. Если первые практически свежие с небольшим количеством глауконита, то вторые содержат смектит, что характеризует их в качестве представителей более глубоких частей базальтового разреза.
В зоне сочленения палеоструктур Американо- и Африкано-Антарктических и Срединно-Атлантического хребтов (станции G9619, G9620 и G9621) подняты вулканиты трех геохимических типов (табл.8). Первый тип - это слабо дифференцированные базальты, отвечающие N-MORB и не выходящие за пределы колебаний составов базальтов САХ в районе ТСБ (FeO /MgO 1-1,5, K2O 0,2-0,3%, P2O5 0,07-0,15%, TiO2 1,4-1,6%, (Nb/Zr)n 0,5-0,7). Вторая группа базальтов отличается повышенными содержаниями литофильных элементов (K2O и P2O5) и TiO2 (2,5-3,0%), характерными для слабо обогащенных толеитов, в то же время они имеют сравнительно низкие отношения (Nb/Zr)n. Некоторые из этих базальтов характеризуются очень высокими концентрациями хрома (500-800г/т). Третья группа (G9619/2, 5, 10, G9620/23 и G9621/1, 4) с низкими содержаниями TiO2 (0,6-1,2%) и P2O5 (0,07-0,1%) имеет также низкие (Nb/Zr)n отношения (0,2-0,3). Среди них встречены высоко дифференцированные разности, вплоть до дацитов. Вулканиты аналогичного состава широко распространены в районе горы Шона. Проанализированы в основном слабо измененные образцы, но представители третьей группы отличаются своей повышенной пористостью от базальтов двух первых групп.
Основные петро-геохимические группы базальтов, их пространственное распространение и геодинамические обстановки образованияПроведенное исследование показывает, что в районе тройного сочленения Буве распространены очень разнообразные по составу вулканиты, среди которых преобладают базальты. Для их классификации и разделения на группы мы руководствовались следующими соображениями. К элементам, характеризующим мантийный источник первичных расплавов, относятся титан, фосфор, калий и ряд других некогерентных элементов (Nb, Zr, Y), отношения которых слабо зависят от процессов частичного плавления и фракционирования. Поэтому концентрации и отношения этих элементов являются главными критериями для подразделения вулканитов на группы. В то же время мы учитывали, что калий достаточно подвижен при подводном выветривании базальтов, поэтому породы с высоким содержанием воды не принимались во внимание при выделении групп; а поведение фосфора и титана при очень высоких степенях дифференциации определяется осаждением из расплава апатита и Fe-Ti фаз. Последнее накладывает отпечаток и на распределение таких несовместимых элементов как Nb, Zr, Y. К наиболее важным параметрам, используемым при характеристике мантийных источников, относятся изотопные отношения и распределение редкоземельных элементов в вулканитах. Мы не проводили собственных исследований в этом направлении, но в ряде случаев имеются опубликованные данные по той или иной группе пород.
Вариации содержаний других элементов во многом зависят от характера дифференциации, при этом образуются дифференцированные вулканические серии, выделение которых было проведено в основном при анализе вариационных диаграмм элемент - коэффициент фракционирования (FeO/MgO). Вулканические серии образуют на диаграммах либо субпараллельные тренды, что говорит о близких условиях фракционирования, либо пересекаются друг с другом. Наличие самостоятельных трендов, характеризующих поведение того или иного элемента, также может свидетельствовать либо об особенностях состава мантийного источника, либо о различиях в условиях частичного плавления разных групп вулканитов. В частности, Клейн и Лангмюр [Klein and Langmuir, 1987] на основании изучения состава базальтовых стекол сделали вывод, что повышенные концентрации натрия в первичном расплаве указывают на более низкую степень частичного плавления мантийного источника, а повышенные концентрации железа - на большую глубину зоны генерации расплавов.
Следует отметить, что на различных диаграммах тренды разных вулканических серий или групп могут совпадать друг с другом, а на других отчетливо различаться, что затрудняет однозначную идентификацию серий. Кроме того, базальты, образовавшиеся из различных по составу мантийных источников, могут иметь для отдельных элементов одинаковые тренды фракционирования.
Наиболее многочисленной и наиболее распространенной в регионе ТСБ группой является группа базальтов N-MORB, главной отличительной чертой которых являются низкие концентрации литофильных элементов. Породы слабо или умеренно дифференцированы, поэтому они не дают протяженного тренда, а образуют на вариационных диаграммах компактные поля составов, располагающиеся в основании всех трендов дифференциации. Лишь на диаграмме FeO - FeO/MgO (рис.4) базальты из этой группы формируют самостоятельный тренд с наиболее высокими концентрациями железа. Проведенные ранее исследования [Симонов и др., 2000; Simonov et al., 1996] показали, что данные базальты могут являться производными расплавов, генерированных при частичном плавлении мантийного субстрата под срединно-океаническими хребтами, начиная с глубин 60-70км. В пределах изученного региона они наиболее широко распространены в рифтовой долине и на флангах САХ. В двух других спрединговых хребтах (АфАХ и АмАХ) они встречены реже (разлом Буве, угловое поднятие Конрад), хотя по данным Ле Ро [Le Roex et al., 1983, 1985] за пределами ТСБ они широко распространены и в пределах этих хребтов. Деплетированные базальты встречены также в зонах сочленения палеоструктур САХ и АфАХ (Восточная область дислокаций). Там они сильно изменены, при этом среди вторичных минералов преобладает хлорит, и, следовательно, к поверхности дна они были выведены с более глубоких горизонтов разреза океанической коры. В зоне сочленения палеоструктур САХ, АфАХ и АмАХ базальты рассматриваемой группы слагают ряд поднятий, но в данном случае они несут признаки лишь поверхностных изменений. Единичные образцы базальтов N-MORB драгированы с нижней части поднятия Шона. Таким образом, базальты N-MORB являются фоновыми для района ТСБ. Внутри самой этой группы наблюдаются вариации содержаний ряда элементов, особенно натрия и титана, однако каких-либо закономерностей в пространственном распределении таким образом различающихся базальтов не наблюдается. Базальты из Восточной области дислокаций выделяются более низкими концентрациями СаО, что связано с широким распространением в них хлорита. Напротив, для некоторых существенно плагиоклаз-порфировых разностей из района разлома Буве свойственны повышенные концентрации СаО и особенно Al2O3.
Близки по составу к базальтам предыдущей группы умеренно обогащенные толеиты типа T-MORB. Они отличаются от деплетированных разностей более высокими концентрациями литофильных элементов (K, P, Zr, Sr, Y, Nb и др.), степень обогащения которыми варьирует. Для них также характерны и более высокие отношения некогерентных элементов Nb/Zr, La/Sm и др. Базальты T-MORB были встречены практически везде, где были описаны деплетированные базальты, но только в меньшем количестве. Их единичные образцы встречены также на хребте Шписс.
Составы вулканитов, драгированных с хребта Шписс и с подводных склонов острова Буве, на вариационных диаграммах TiO2, K2O, P2O5 - FeO/MgO (рис.2, 3, 4) в совокупности образуют единый самостоятельный, протяженный тренд, отражающий продолжительную дифференциацию, в ходе которой накапливались железо, натрий, калий и уменьшались содержания магния, кальция и алюминия. Судя по характеру тренда, концентрации железа, титана и фосфора на первых этапах фракционирования быстро возрастали, а на конечных этапах, когда в промежуточной камере происходило осаждение Fe-Ti фаз (ильменита?) и апатита, их содержание в расплаве значительно сократилось. Несмотря на очень протяженный тренд дифференциации, содержание кремнекислоты до момента осаждения апатита и Fe-Ti фаз увеличивается не намного. Описанный характер дифференциации свойственен для толеитовых расплавов, фракционирование в которых происходит по феннеровскому типу. Среди вулканитов острова Буве существенно больше сильно дифференцированных разностей, чем в пределах хребта Шписс, что указывает на более крупные размеры промежуточного очага, существующего под вулканом Буве. В пользу этого свидетельствуют и гораздо большие поперечные размеры вулканического сооружения острова Буве.
Хотя мы и объединили вулканиты острова Буве и хребта Шписс в единую серию, тем не менее между ними имеются различия. На вариационных диаграммах Na2O, Al2O3, FeO - FeO/MgO они образуют различные тренды параллельные друг другу, при этом концентрации Na2O и FeO выше, а Al2O3 ниже в вулканитах хребта Шписс при тех же самых уровнях дифференциации. Это различие свидетельствует о разнице в условиях генерации первичных расплавов для хребта Шписс и для острова Буве.
На вариационных диаграммах, отображающих поведение элементов-примесей, вулканиты острова Буве имеют более высокие отношения Nb/Zr и Zr/Y, чем таковые хребта Шписс. Эта разница может быть обусловлена как различием в составе мантийного источника, так и процессами фракционной кристаллизации, так как анализировались в основном сильно дифференцированные разности. Некоторые различия между вулканитами Буве и Шписс следуют также из данных по их изотопии [Сущевская и др., 1999; Kurz et al., 1998]. Вулканиты острова Буве характеризуются довольно высокими содержаниями радиогенных изотопов стронция (87Sr/86Sr 0,70371) и свинца (206 Pb/204Pb 19,588), что резко отличает их от деплетированных базальтов, в частности, южного окончания САХ (соответственно 0,70323-0,70338 и 18,037-18,932). Вулканиты хребта Шписс имеют в основном низкие значения 87Sr/86Sr (0,70329-0,70336) на уровне деплетированных MORB, хотя у отдельных образцов оно более высокое (0,70349), и промежуточные значения 206Pb/204Pb (19,010-19,244). В вулканитах острова Буве определены высокие значения радиоактивного гелия (3He/4He 12,4), которые уменьшаются по мере удаления от острова. Повышенные значения радиоактивного гелия в вулканитах острова Буве в совокупности с высокими содержаниями радиогенных изотопов стронция и свинца в них указывают на то, что их первичные расплавы связаны с плюмом глубинной обогащенной мантии. В то же время вулканиты хребта Шписс характеризуются очень низкими отношениями 3He/4He (2,15-7,44), в целом даже более низкими, чем в деплетированных базальтах САХ (7,11-7,66) [Kurz et al., 1998]. Таким образом, если следовать имеющимся представлениям о генетической роли изотопных и геохимических параметров, то невозможно предложить непротиворечивую модель образования вулканитов хребта Шписс. С одной стороны, содержания калия, фосфора, титана, ряда литофильных элементов-примесей в них близки к таковым в вулканитах острова Буве, плюмовая природа которых, как показано выше, подтверждается многими данными. С другой стороны, их изотопные характеристики отличаются. Изотопия стронция близка к деплетированным толеитам, изотопия свинца занимает промежуточное положение между деплетированными базальтами и вулканитами острова Буве, а для того чтобы объяснить очень низкие значения радиоактивного гелия необходимо предположение либо о разбавлении исходных расплавов компонентом, обогащенным радиогенным гелием, либо о ранней дегазации мантийного источника. В работе Н.М.Сущевской с соавторами [Сущевская и др., 1999] делается интересное предположение о том, что вулканиты хребта Шписс произошли в результате плавления метасоматизированной гетерогенной мантии, образовавшейся на более раннем этапе рифтогенеза. Возможность ее сохранения в современных осевых частях спрединговых хребтов следует из сложной геодинамики раскрытия этой части Южного океана. Привлечение метасоматизированной мантии в качестве магматического источника объясняет некоторую обогащенность вулканитов хребта Шписс радиогенными изотопами и низкие значения радиоактивного гелия. Хотя идея о возможности нахождения метасоматизированной мантии в данном регионе не вызывает возражений, все же имеется ряд, прежде всего, геологических фактов, не позволяющих полностью принять эту точку зрения. Хребет Шписс начал формироваться около 2-2,5 млн лет назад, а собственно сам вулкан Шписс около 1млн лет назад, когда крайний отрезок АфАХ уже существовал, время начала его образования около 10 млн лет назад [Ligi et al., 1999]. На ранних этапах существования этого сегмента АфАХ в его осевой части изливались преимущественно деплетированные базальты, о чем свидетельствуют данные по составу базальтов станций G9620 и G9621, находящихся на западном фланге этого сегмента.
Между вулканитами хребта Шписс и острова Буве существует структурная близость. И те, и другие формируют мощные поднятия, венчающиеся крупными вулканическими постройками центрального типа, под которыми существуют обширные промежуточные магматические камеры. Время начала формирования вулканических построек приблизительно одинаковое. Привлекая этот дополнительный аргумент, мы склоняемся все же к представлению о том, что мантийным источником для первичных расплавов хребта Шписс служило вещество того же плюма, что и для расплавов острова Буве. Этот плюм поднимается к поверхности по двум основным каналами, соединяющимися на глубине. Поскольку канал, центрированный под хребтом Шписс, совпадает со спрединговым центром, то в данном случае происходит смешение обогащенных расплавов с истощенными расплавами, характерными для океанского рифтового вулканизма. В пользу реальности процесса смешения расплавов, образованных из плюмовых источников, с деплетированными N-MORB свидетельствует диаграмма соотношений Zr/Y-Zr/Nb (рис.6). Из нее можно сделать вывод о том, что не только базальты хребта Шписс, но и обогащенные базальты из рифтовых долин САХ и АфАХ являются результатом смешения, представляя разную степень смешения этих конечных компонентов. В то же время очевидно, что процессы смешения имеют очень сложный характер и не укладываются в рамки простой модели, предложенной Дж.Шиллингом и др. [Shilling et al., 1985]. Действительно, в вулканитах хребта Шписс содержания одних элементов (калий, титан, фосфор, хром и др.) аналогичны таковым в плюмовых выплавках (вулканиты острова Буве), другие параметры (отношения несовместимых элементов-примесей, изотопов свинца) имеют промежуточные значения, наконец, отношения изотопов стронция и гелия близки к таковым в деплетированных расплавах. В обогащенных толеитах из рифтовой долины САХ, которые, как сказано выше, скорее всего, также являются результатом смешения расплавов из плюмового и истощенного источников, наблюдаются иные соотношения компонентов. В частности, от вулканитов хребта Шписс они отличаются меньшими концентрациями некогерентных литофильных элементов и натрия, но заметно большим содержанием магния, хрома, ванадия и скандия. Взаимодействие между плюмовым источником и источником истощенных базальтов не ограничивается только процессами смешения их расплавов. Более высокие концентрации Na2O и FeO в вулканитах хребта Шписс в сравнении с таковыми острова Буве свидетельствуют и об иных условиях частичного плавления. Не исключено, что именно с этими изменениями условий частичного плавления может быть связано вовлечение в процесс плавления метасоматизированной мантии, присутствие которой в данном районе предполагается в работе [Сущевская и др., 1999], чем можно объяснить низкие значения 3He/4He в вулканитах хребта Шписс.
Таким образом, учитывая то, что на диаграммах TiO2, K2O, P2O5 - FeO/MgO вулканиты хребта Шписс и острова Буве образуют единый тренд дифференциации, с определенным приближением их можно объединить в единую вулканическую серию. В этот же тренд попадает часть базальтов из рифтовой долины АфАХ.
Однако немалая часть базальтов из рифтовой долины АфАХ составляет самостоятельную группу. Основным критерием для ее выделения послужил тот факт, что на вариационных диаграммах K2O, P2O5 - FeO/MgO (рис.2, 3, 4) данные базальты образуют самостоятельные тренды с более высокими значениями K2O и P2O5, чем у представителей вулканической серии острова Буве при тех же самых коэффициентах фракционирования. Обособление этого тренда могло быть также следствием занижения коэффициента фракционирования из-за пониженных концентраций железа или повышенных концентраций магния в рассматриваемых базальтах в сравнении с вулканитами острова Буве. Однако по концентрации магния они не отличаются, а железо, напротив, имеет более высокие значения в базальтах данной группы и, следовательно, повышенные концентрации фосфора и калия отражают особенности состава первичных расплавов. Другим принципиальным отличием базальтов этой группы от вулканитов острова Буве являются существенно более высокие концентрации хрома в первых. Такие индикаторные отношения элементов-примесей как Nb/Zr и La/Sm у них близки к таковым у базальтов хребта Шписс. Данные по изотопии базальтов из рифтовой долины этого сегмента АфАХ в целом [Kurz et al., 1998] показывают сравнительно высокие содержания радиогенных изотопов стронция (87Sr/86Sr 0,70322-0,70378), свинца (206Pb/207Pb 19,287-19,343) и радиоактивного гелия (3He/4He 8,1-12,9), приближающихся к таковым у базальтов с острова Буве. Поэтому было бы логично объяснить происхождение этих базальтов смешением расплавов, продуцируемых плюмом глубинной мантии, центрированным под островом Буве, и расплавов, генерированных в истощенной мантии. Но в таком случае необходимо выяснить, каким образом их первичные расплавы были дополнительно обогащены калием и фосфором.
Рекомендуем скачать другие рефераты по теме: ответы 4 класс, готовые дипломные работы.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6 | Следующая страница реферата