Природа и причины землетрясения и цунами
| Категория реферата: Рефераты по геологии
| Теги реферата: егэ ответы, ответы по русскому
| Добавил(а) на сайт: Званцов.
Предыдущая страница реферата | 1 2 3 4
Для регистрации и изучения землетрясений во многих странах существует сеть станций непрерывного слежения за сейсмическим состоянием Земли (или, как мы теперь называем, станций сейсмического мониторинга и прогнозирования). На станциях размещаются высокоточные приборы - сейсмографы, регистрирующие малейшие колебания земной поверхности, а также комплекс прогностических методов для предсказания землетрясений с помощью различных его "предвестников".
Сейсмограф - это очень древний прибор (из геофизической аппаратуры древнее его только компас). Первый сейсмограф был изготовлен в Китае во II веке нашей эры. Несколько остроумных конструкций было предложено в Западной Европе в XVIII и в начале XIX в., но действительно эффективные записывающие приборы были изобретены только 50-100 лет назад, а в последние десятилетия они были значительно усовершенствованы. Сейсмограф представляет собой колебательную систему, предназначенную для измерения и записи сейсмических движений. Колеблющийся элемент должен быть прочно прикреплен к твердому основанию, так чтобы он двигался вместе с грунтом. Обычно этот элемент демпфируется, т.е. амплитуда его колебаний ограничивается и гасится.
Конструкции разных сейсмографов в значительной степени различаются. В одних используется горизонтально подвешенный маятник, в других - обратный маятник, установленный на пружинках вертикально. Период собственных колебаний маятника зависит от его массы, демпфированности, чувствительности подвески и эти параметры могут меняться в широких пределах. Это используется на сейсмостанциях, так как одним и тем же сейсмографом невозможно записать легкий промышленный "сейсмический шум" и сильное землетрясение, при котором очень чувствительный и слабо демпфированный сейсмограф просто "зашкалит".
В записывающем устройстве используются механические, оптические, электромагнитные элементы или их комбинации. Их назначение - передать колебания на бумагу самописца, на магнитную ленту или на магнитный диск ком-пьютера. Амплитуда так называемого "промышленного шума" во много раз ниже, чем амплитуда даже самого слабого землетрясения. Поэтому появление первых же толчков - форшоков хорошо заметно на самописце или на дисплее компьютера. Достаточно большое усиление сейсмографов позволяет "разогнать" амплитуду колебаний грунта до визуально заметных величин. Обычная величина усиления в сейсмическом регистрационном канале - десятки-сотни тысяч раз по сравнению с реальной амплитудой колебаний грунта. Хотя возможности увеличения превышают величину 4-5 млн. раз, но "промышленный шум" накладывает ограничение на повышение усиления.
Очень важна точная, до долей секунды, регистрация времени; поэтому на сейсмограммах записываются также сигналы времени, передаваемые по радиоканалу из метрологических обсерваторий (Палат точного времени).
В последние годы аппаратура существенно усовершенствовалась в связи с появлением лазерной техники и мощнейших компьютерных комплексов. В областях активной сейсмичности часто устанавливаются лазерные дальномеры на противоположных сторонах крупных разломных зон. Это делается для того, чтобы обнаружить малейший крип или подвижку склонов. Сейсмографы часто группируются, и создаются региональные сети стандартизованных сейсмографов, таких, как созданная под эгидой США и Канады Всемирная сеть стандартных сейсмографов (WWSSN). В шт. Калифорния, подверженном частым землетрясениям, имеется собственная сеть сейсмографов.
Сейсмические морские волны - цунами, иногда ошибочно называемые "приливными" волнами, часто сопровождают крупные землетрясения, происходящие в районах морского или океанического побережья. Они возникают тогда, когда энергия землетрясения передается как морскому дну, так и воде. Волны цунами характеризуются высокой скоростью и большой длиной, однако в открытом море их высота не бывает больше первых метров. С корабля в море редко можно заметить прохождение таких волн. Однако, когда эти волны выходят на мелководье, они могут стать весьма разрушительными. Высота каждой волны достигает там многих метров, потому что длина волны уменьшается из-за близости дна, как и в случае обычных волн. Соответственно энергия воды, имевшей большую глубину, концентрируется в коротком вертикальном интервале.
Цунами много раз приносили опустошение прибрежным районам. После Лиссабонского землетрясения 1755 г. высокие волны сначала осушили бухту, потом выплеснулись на берег примерно на километр, а потом смыли в море корабли, дома, мосты и людей, т.е. все, что попадалось на их пути. Цунами, возникшее в районе Алеутских островов, уничтожило 1 апреля 1946 г. маяк на мысе Датч (Аляска), расположенный на 15 м выше уровня моря. Волна проделала путь 3800 км к Гавайским островам со средней скоростью 780 км/ч. В открытом море волны имели длину 150 км. У берега их высота достигала 3-6 м. В узких заливах она вздыбливалась до отметок 10-15 м над уровнем моря. Преобразившись в движущиеся стены воды, эти волны нанесли тяжелые повреждения домам, шоссейным и железным дорогам, мостам, пристаням, волнорезам, судам и были причиной гибели 160 человек. Общий материальный ущерб на Гавайях оценивался в 25 млн. долларов (в ценах 1946 г.). Волна достигла и берегов Калифорнии, где ее высота составляла до 4 м. После этой трагедии была организована Международная система предупреждения о движении волн цунами, с тем, чтобы сообщать в населенные пункты о грозящей им опасности.
Гигантские морские волны, возникшие у побережья Чили во время землетрясения 1960 г., достигли Гавайев, пройдя 11000 км приблизительно за 15 часов (скорость - 730 км/час). Мореограф в Хило на Гавайских островах попеременно отмечал подъем и падение уровня воды, происходившее примерно с 30-минутным интервалом. Несмотря на предупреждение, эти волны в Хило и других местах Гавайских островов стали причиной гибели 60 человек и нанесли ущерб в 75 млн. долларов. Еще через 8 ч волны достигли Японии, в очередной раз разрушив там портовые сооружения; при этом погибли 180 человек. Жертвы и разрушения имелись также на Филиппинах, в Нов. Зеландии и в других частях Тихоокеанского кольца.
Рассмотрим меры защиты от землетрясений.
Когда в густонаселенной местности происходит сильный подземный толчок, многие здания получают повреждения или разваливаются. Главная причина этого - низкое качество построек. Разрушительное воздействие землетрясений связано с неустойчивостью грунта, с использованием сырцового кирпича или непрочной каменной кладки, что приводит к падению крыш и печных труб, растрескиванию фундаментов и стен.
Потенциально опасны тяжелые выступающие части домов, стенки парапетов и ненужные лепные украшения. Старая известка, незакрепленная кровля и стропила, лишенные элементов жесткости лифтовые шахты и каркасы, неукрепленные лестничные колодцы и общие стены смежных домов разного размера - все это также представляет опасность. При дифференцированных движениях рвутся подземные трубопроводы всех видов.
Чтобы свести к минимуму возможные повреждения, строители должны учитывать все геологические факторы, определяющие устойчивость здания. Скальные породы - идеальное основание для крупных сооружений. Следует избегать строительства на слабых грунтах, крутых склонах, насыпных землях. Нежелательно также возводить здания на морских утесах, на обрывистых берегах рек, вблизи глубоких котлованов и на участках с высоким уровнем грунтовых вод в рыхлых осадочных породах.
При строительстве мостов и высоких зданий необходимо обращать особое внимание на их вес, устойчивость по отношению к горизонтальным силам и на внутреннюю уравновешенность. Доказано, что железобетонные здания сравнительно устойчивы, однако деревянные, стальные и укрепленные каменные дома также могут быть сейсмостойкими, если они хорошо сконструированы и добротно построены. Для этого применяются соответствующие элементы жесткости и крепления: связывающие скобы, подпорки и стойки, анкерные болты. Наиболее безопасной конструкцией является та, которая будет гибкой и сможет двигаться как единое целое, т.е. так, чтобы отдельные ее части не ударялись друг о друга.
Обеспечение сейсмостойкости - обязательное требование при строительстве в сейсмоопасных районах. Необходимое увеличение стоимости составляет, по инженерной оценке, менее 10%, если соответствующие проблемы решаются на стадии проектирования.
Чтобы избежать катастрофических последствий в особо сейсмоопасных районах могут быть приняты некоторые административные меры. Для контроля землепользования и типов построек, разрешенных в зонах высокой сейсмичности, должны быть обязательны ограничения, налагаемые сейсмическим районированием. Это относится, например, к районам с неустойчивыми насыпными грунтами и к районам, где развиты оползни. Строительные нормы и правила должны определять стандарты различных зданий. Учет различного уровня риска в связи с особенностями геологической обстановки, выполняемый с помощью карты сейсмической опасности должен стать обычной практикой строительных и страховых компаний. Все эти меры контроля - путем районирования, совершенствования строительных норм и классификации зданий по уязвимости - особенно необходимы для предотвращения человеческих жертв и катастрофических разрушений при будущих подземных толчках в районах сейсмической опасности: по периферии Тихого океана и в Средиземноморском поясе. Серьезная проблема состоит в том, как привести ныне существующие здания в соответствие со стандартами сейсмостойкости; другая проблема - подготовка планов мероприятий по смягчению последствий разрушительных подземных толчков.
Скачали данный реферат: Ustjuzhanin, Милов, Smaragd, Астанков, Dostovalov, Feopistija, Werba.
Последние просмотренные рефераты на тему: конспекты занятий в детском саду, решебник по химии, рассказы чехова, реферат на.
Категории:
Предыдущая страница реферата | 1 2 3 4