Учение о географических системах
| Категория реферата: Рефераты по геологии
| Теги реферата: сочинение на тему онегин, решебник
| Добавил(а) на сайт: Volikov.
Предыдущая страница реферата | 1 2
Со взаимным перемещением тел в системе Земля - Солнце - Луна связаны периодические изменения приливообразующих сил, что проявляется в климате, водности, развитии ледников. Установлен 1850-летний цикл подобного происхождения, а кроме того, намечается несколько более коротких (до 1-2 лет) и более продолжительных (до 3500-4000) лет ритмов. Колебания эксцентриситета земной орбиты, наклона земной оси к плоскости орбиты также сказывается на климате. С этими факторами связывают ритмы большой продолжительности (41 000-45 000, 90 000, 370 000 лет), одним из проявлений которых являются материковые оледенения.
Самые длительные ритмы, с амплитудой в миллионы лет, геологические. К ним относят большие геологические циклы (165-180 млн. лет), в том числе каледонский, герцинский, мезозойский и кайнозойский. Начало каждого из них знаменовалось опусканиями земной коры и морскими трансгрессиями, выравниванием климатических контрастов; завершается цикл орогеническими движениями, расширением суши, усложнением ее рельефа, усилением климатических контрастов, большими преобразованиями в органическом мире.
Разные ритмы накладываются друг на друга, причем многие из них повторяются не со строгой периодичностью, а имеют циклический характер. Поэтому отдельные ритмы не всегда бывают ясно выражены. Возможны автоколебательные ритмические явления, обусловленные не внешними по отношению к эпигеосфере процессами, а собственными закономерностями, присущими тем или иным компонентам или процессам. Простейший пример - циклы в жизни леса, связанные с продолжительностью жизни лесообразующих пород. Более сложный процесс - автоколебания в системе ледники - атмосфера - Океан. Рост ледниковых щитов сопровождается похолоданием и понижением уровня океана. Это, в свою очередь, приводит к уменьшению испарения, осадков и сокращению ледников. Но сокращение ледников имеет своими следствиями рост площади океанов, потепление, увеличение количества осадков, что способствует новому наступлению ледников, и т. д.
Ритмические изменения не бывают замкнутыми, и чем больше продолжительность цикла, тем меньше возможность возвращения природных комплексов к прежнему состоянию. Каждый последующий цикл не является полным повторением последнего, и в конечном счете развитие эпигеосферы необратимо - оно имеет вид восходящей спирали, каждый виток которой знаменует одновременно поднятие на более высокий уровень развития. В качестве самых больших “витков” можно рассматривать тектонические циклы.
Необратимость (направленность) развития эпигеосферы проявляется в постепенном усложнении ее структуры, появления новых компонентов и новых типов геосистем. На протяжении последних 550-600 млн. лет, соответствующих фанерозою, эволюция эпигеосферы прослеживается достаточно отчетливо. В земной коре за это время происходило сокращение геосинклиналей и разрастание платформенных структур, усиление процесса осадкообразования, увеличение мощности осадочной оболочки и усложнение ее вещественного состава, в особенности биогенной аккумуляции. В гидросфере увеличивалась соленость, причем на первых этапах Мировой океан обогащался солями благодаря вулканизму, а в дальнейшем усилилось значение выноса солей с суши речным стоком; соответственно на фоне преобладающих ионов Na+ и Cl- возрастала доля Ca2+ и CO32
В первичной атмосфере господствовали, по-видимому, гелий и водород, затем она обогащалась газами глубинного (вулканического) происхождения - парами воды, двуокисью и окисью углерода, сероводородом и др. По мере развития растительного покрова двуокись углерода стала изыматься из атмосферы, и одновременно в нее поступало все больше кислорода и азота.
Прогрессивная линия развития - от низших форм к высшим - особенно очевидно выражена в органическом мире. Организмы играли все более существенную роль в преобразовании неорганических геосфер. Это дает основание рассматривать жизнь, точнее ее взаимодействие с абиогенной средой, как главную движущую силу развития эпигеосферы.
2.2. Иерархия региональных геосистем: дифференциация эпигеосферы и физико-географическое районирование
Дифференциация эпигеосферы на геосистемы регионального уровня обусловлена сложными взаимоотношениями двух главных энергетических факторов - лучистой энергии Солнца и внутриземной энергии, их неравномерным распределением, как в пространстве, так и во времени.
Количество поступающей коротковолновой радиации Солнца на единицу площади земной поверхности уменьшается от экватора к полюсам вследствие шарообразности Земли. С этим связано закономерное изменение всех физико-географических процессов и в целом геосистем по широте, называемое географической (широтной) зональностью Зональность имела бы математически правильный характер, если бы вся поверхность земного шара была однородной по своему составу и не имела бы неровностей. В действительности же картина зональности оказывается много сложнее..
Уже в атмосфере поток солнечных лучей подвергается преобразованию. Здесь часть его отражается от облаков и рассеивается в мировом пространстве. В силу подвижности воздушной среды образуются циркуляционные пояса с воздушными массами, обладающими неодинаковой прозрачностью по отношению к солнечным лучам. Над экватором в атмосфере много облаков, которые сильно отражают и рассеивают коротковолновую радиацию, тогда как в тропиках воздух наиболее сух и прозрачен. Поэтому максимальное количество лучистой энергии Солнца приходится не на экватор, а на пояса между 20-й и 30-й параллелями в обоих полушариях.
Важнейшим следствием зональности радиационного баланса и циркуляции атмосферы является зональное распределение тепла и влаги. Запасы тепла на земной поверхности изменяются в общем соответствии с радиационным балансом, а также среднемесячных температур, в особенности теплых месяцев. Однако зональные изменения увлажнения имеют иной, более сложный характер. Атмосферные осадки имеют два максимума - главный на экваторе и второй в умеренных широтах, и резкий минимум в тропиках, т.е. как там, где запасы солнечного тепла наибольшие.
Чтобы судить о влагообеспеченности геосистем, необходимо сопоставить ее с величиной испаряемости. Испаряемость - это то количество влаги, которое могло бы испариться в данных условиях при допущении, что ее запасы неограниченны. Испаряемость характеризует как бы потребность геосистемы во влаге, ее предельное количество, которое может “работать” в природном комплексе. В общих чертах распределение испаряемости повторяет зональные кривые теплообеспеченности, с особенно резким максимумом в тропиках (до 4000-5000 мм в год) и минимумом в приполярных широтах (менее 100 мм в год). Отношение годовой суммы осадков к годовой испаряемости - так называемый коэффициент увлажнения Г. Н. Высоцкого - Н. Н. Иванова (К) - может служить наиболее объективным показателем атмосферного увлажнения. При К
1 увлажнение избыточное (наблюдается в высоких широтах - примерно к северу и к югу от 50-й параллели), а при К
Скачали данный реферат: Каверин, Tobolenko, Izmaragd, Chelomej, Kondr, Буров, Панфёров.
Последние просмотренные рефераты на тему: реферат этикет, рефераты помощь, дипломная работа по психологии, реферат по биологии.
Категории:
Предыдущая страница реферата | 1 2