Эксплуатационное обслуживание ВЦ
| Категория реферата: Рефераты по информатике
| Теги реферата: мировая торговля, эффективность реферат
| Добавил(а) на сайт: Nosachjov.
1
Анализ эксплуатационного обслуживания ВЦ средней производительности
Разработать модель для эмитации производственной деятельности ВЦ при
планово-предупредительном обслуживании эксплуатируемого парка ЭВМ. По полученной
модели оценить распределение случ. переменной "число машин находящихся на
внеплановом ремонте".
Рассматриваемый ВЦ имеет в своем составе парк ЭВМ , обеспечивающий среднюю
производительность. и базирующийся на ЭВМ IBM PC с ЦП типа 386SX и 386DX. Кроме:
этого на ВЦ используются в качестве сетевых серверов машины типа 486DX и
Pentium, поддерживающие локальные сети, в которых осуществляется сложная
цифровая обработка больших цифровых массивов информации , кроме этого, решаются
задачи разработки цветных изображений.
На ВЦ принято планово-профилактическое обслуживание. ВЦ с небольшим парком ЭВМ и
поэтому ремонтом ЭВМ занимается всего один радио-механик ( в терминах СМО -
ремонтник). Это означает: что одновременно можно выполнять обслуживание только
одной ЭВМ. Все ЭВМ должны регулярно проходить профилактический осмотра. Число
эвм подвергающееся ежедневному осмотру согласно графика, распределено равнлмерно
и составляет от 2 до 6. Время, необходимое для осмотра и обслуживания каждой ЭВМ
примерно распределено в интервале от 1,5 до 2,5 ч. За это время необходимо
проверить саму ЗВМ, а также такие внешние ус-ва как цветные струйные принтеры,
нуждающиеся в смене или заправке катриджей красителем. Несколько ЭВМ имеют в
качестве внешних устройств цветные плоттеры (графопостроители) , у которых
достаточно сложный профилактический осмотр.
Рабочий день ремонтника длится 8 ч, но возможна и многосменная работа.
В некоторых случаях профилактический осмотр прерывается для устранения внезапных
отказов сетевых серверов, работающих в три смены, т.е 24 ч в сутки. В этом
случае текущая профилактическая работа прекращается, и ремонтник начинает без
задержки ремонта сервера. Тем не менее, машина-сервер, нуждающаяся в ремонте, не
может вытеснить другую машину-сервер, уже стоящую на внеплановом ремонте.
Распределение времени между поступлениями машин-серверов является пуассоновским
со средним интервалом равным 48 ч. Если ремонтник отсутствует в момент
поступления ЭВМ эти ЭВМ должны ожидать до 8ч утра. Время их обслуживания
распределено по экспоненте со средним значение в 25 ч.Необходимо построить
GPSS-модель для имитации производственной деятельности ВЦ. По полученной модели
необходимо оценить распределение случайной переменной "число машин-серверов,
находящихся на внеплановом ремонте". Выполнить прогон модели, имитирующей работу
ВЦ в течении 25 дней, введя промежуточную информацию по окончании каждых пяти
дней. Для упрощения можно считать, что ремонтник работает 8 ч в день без
перерыва, и не учитывать выходные. Это аналогично тому, что ВЦ работает 7 дней в
неделю.
Метод построения модели
Рассмотрим сегмент планового осмотра ЭВМ. (Рис.1.). Транзакты, подлежащие
плановому осмотру, являются пользователями обслуживающего прибора (ремонтник),
которым не разрешен его захват. Эти ЭВМ-транзакты проходят через первый сегмент
модели каждый день с 8 ч утра.ЭВМ-транзакт входит в этот сегмент. После этого
транзакт поступает в блок SPLIT, порождая необходимое число транзактов,
представляющих собой ЭВМ, запланированные на этот день для осмотра.Эти
ЭВМ-транзакты проходят затем через последовательность блоков
SEIZE-ADVANCE-RELEASE и покидают модель. .
Рис.1. Первый сегмент
Сегмент "внепланового ремонта"ЭВМ-серверы, нуждающийся во внеплановом ремонте,
двигаются в модель в своём собственном сегменте. Использование ими прибора
имитируется простой последовательностью блоков PREEMPT-ADVANCE- RETURN. Блок
PREEMPT подтверждает приоритет обслуживания ЭВМ-сервера (в блоке в поле В не
требуется PR) (Рис.2.)
Сегмент "начало и окончание" рабочего дня ВЦ. Для того, чтобы организовать
завершение текущего дня работы ВЦ по истечении каждого 8-ми ч дня и его начала в
8 ч утра, используется специальный сегмент. Т Транзакты-диспетчер входит в этот
сегмент каждые 24 ч (начиная с конца первого рабочего дня), Этот транзакт,
имеющий в моделе высший приоритет, затем немедленно поступает в PREEMPT, имеющий
в поле В символа PR. Диспетчеру, таким образом, разрешено захватывать
прибор-ремонтник вне зависимости от того, кем является текущий пользователь
(если он есть). Далее, спустя 16 ч, диспетчер освобождает прибор-ремонтник,
позволяя закончить ранее прерванную работу (при наличии таковой).(Рис.3.)
Сегмент "сбор данных для неработающих ЭВМ-серверов". Для сбора данных,
позволяющих оценить распределение числа неработающих ЭВМ-приборов, используется
этот отдельный сегмент. (Рис.4.)
Для этих целей используется взвешенные таблицы, которые позволяют вводить в них
в один и тот же момент времени наблюдаемые случайные величины. Для этих целей
включаются два блока - TABULATE, но если ввод в таблицу случаен (значение
величин і2), то этот подход не годен. В этом случае используется необязательный
элемент олеранд, называемый весовым фактором, обозначающий число раз, которое
величина, подлежащая табулированию, должна вводится в таблицу. Это позволяет
назначать разые веса различным наблюдаемым величинам.
Сегмент "промежуточная выдача". и окончание моделирования в конце дня
используется последовательность GENERATE-TERMINATE (Рис.5.).
Cегменты представлены на рис.1 - 5.
Логика работы модели
В моделе предполагается, что некоторое время, равное единице, соответствует 8 ч
утрапервого дня моделирования.Затем, первая (по счёту) ЭВМ выделенная
диспетчером для планового осмотра, входит в модель, выйдя из GENERANE. Далее,
каждая следующая первая ЭВМ, будет поступать в модель через 24 ч. ( блок 1, где
операнд А=1440 ед.врем., т.е числу минут в 24 ч. Первое появление 5 диспетчера
на ВЦ произойдет в момент времени, равный 481(блок 14). Это соответствует
окончанию восьмого часа. Второй раз диспетчер появится через 24 часа.
Транзакт обеспечивающий промежуточную выдачу: впервые появится во время, равное
6241, выходя из блока 25. Это число соответствует концу 8-го часа пятого дня
моделирования. ( 24 х 4 = 96 ч, 96 + 8 = 104. 104 х 60 =6240, 6240 + 1 = 6241
ч). Следующий транзакт появится через пять дней.
Блок 19 позволяет вести моделирование до времени в 35041, что соответствует 25
дням плюс 8 ч, выраженных в минутах.
Приоритетная схема представлена в табл.3.2.
Таблица 3.2.
Сегмент моделиИнтерпретация транзактовУровень приорит.
3Диспетчер3
1ЭВМ, прибывающие на плановый осмотр2
2ЭВМ-сервер, поступающая на внеплановый ремонт 2
4Транзакт, наблюдающий за очередью1
5Транзакты, обеспечивающие выдачу на печать 0
Чтение таблицы сверху вниз эквивалентно просмотру цепи текущиж событий с начала
и до конца моделирования
Результаты моделирования
Полученная статистика очереди ЭВМ-серверов на ремонт показывает, что на конец 25
дня среднее ожидания составляет 595 вр.ед., или около 19 ч. В среднем 0,221
ЭВМ-сервер ожидают обслуживания, и одновременно самое большее время 4 машины
находятся в ожидании. За 25 дней на внеп- лановый ремонт поступило 13 машин..
Табличная информация указывает, что 83 % времени это были ЭВМ-серверы ,
ожидающие внепланового ремонта, 12% времени в ожидании находилась одна машина,
4% - две машины, и только 0,52% и 0,05% времени одновременно ожидали три и
четыре машины. Для удобства результаты сведены в табл.3.3.
Таблица 3.3.
Число ожидающих ЭВМ Время ожида-ния в %
0 машин83
1 машина12
2 машины4
3 машины0,52
4 машины0,05
4. Минимизировать стоимость эксплуатационных расходов ВЦ средней
производительности.
Пусть в состав ВЦ входит 50 персональных компьютеров ( в дальнейшем просто ЭВМ).
Все ЭВМ работают по 8 ч в день, и по 5 дней в неделю. Любая из ЭВМ может выйти
из строя, и в любой момент времени. В этом случае её заменяют резервной ЭВМ либо
сразу, либо по мере её появления после восстановления. Неисправную ЭВМ
отправляют в ремонтную группу, ремонтируют, и она становится резервной.
Необходимо определить, сколько ремонтников следует иметь, и сколько машин
держать в ремонте, оплачивая их аренду. Парк резервных машин служит для подмены
вышедших из строя ЭВМ. принадлежащих ВЦ. Оп- лата арендных машин не зависит от
того находятся они в эксплуатации , или в резерве.
Цель анализа - минимизировать стоимость эксплуатации ВЦ. оплата рабочих в
ремонтной группе составляет 3,75$ в ч. Арендная плата за одну ЭВМ составляет 30$
в день. Почасовой убыток при использовании менее 50 ЭВМ оценивается примерно в
20$ за ЭВМ. этот убыток возникает из за общего снижения промзводительности ВЦ.
Считаем, что на ремонт вышедшей из строя ЭВМ уходит примерно 7ч, и распределение
этого времении равномерное.
Необходимо определить, сколько ремонтников следует иметь, и сколько машин
держать в ремонте, оплачивая их аренду. Парк резервных машин служит для подмены
вышедших из строя ЭВМ. принадлежащих ВЦ. Оплата арендных машин не зависит от
того находятся они в эксплуатации , или в резерве.
Среднее время наработки на отказ каждой ЭВМ распределено так же равномерно, и
составляет 157 ± 25 ч. Это время и распределение оди- наково для всех ЭВМ ВЦ,
так и для арендуемых ЭВМ.
Так как плата за аренду не зависит оттого, используют эти ЭВМ или нет, то и не
делается попыток увеличить число собственных ЭВМ ВЦ.
Необходимо построить GPSS модель такой системы и исследовать на ней дневные
расходы при разном числе арендуемых ЭВМ при при одинаковом числе ремонтников и
от числа ремонтников при постоянном числе арендуемых ЭВМ.
Метод построения модели
Определим ограничения, которые существуют в моделируемой системе. Существуют три
ограничения.
1. Число ремонтников в ремонтной группе.
2. Минимальное число ЭВМ, одновременно работающих на ВЦ.
3. Общее число ЭВМ циркулирующих в системе.
Для моделирования 1 и 2 ограничений удобно использовать многоканальные ус-ва (
термин взят из теории СМО), а третье ограничение-моделировать при помощи
транзактов. При этом ремонтники и работающие ЭВМ, находящиеся в производстве,
являются константами. При этом ЭВМ являются динамическими объектами,
циркулирующими в системе.
Рассмотрим состояния в которых может находиться ЭВМ. Пусть в настоящий момент
она находится в резерве. Тогда многоканальное ус-во NOWON (т.е. в работе)
используется для моделирования работающих ЭВМ, будет заполнено, и резервные
машины не могут войти в него. И тогда транзакт моделирующий резервную ЭВМ может
после многократных попыток войти в NOWON. Проходя через блоки ENTER и ADVANCE
транзакт моделирует время работы до тех пор, пока ЭВМ не выйдет из строя.
После выхода из строя ЭВМ транзакт покидает NOWON . При этом возникает
возможность у другой резервной ЭВМ войти в него,и если транзакт ожидает
возможность войти в многоканальное ус-во MEN (ремонтная группа. которая м.б.
представлена даже одним ремонтником). Выйдя из MEN транзакт становится
восстановленной ЭВМ. После ремонта он покидает MEN , освобождая ремонтника,
который может начать немедленно ремонт другой ЭВМ. Сам транзакт поступает в ту
часть модели, из которой он начинает попытки войти в NOWON.
Общее число ЭВМ циркулирующих в системе равно 50 плюс три ЭВМ резервных, и это
число надо задать до начала прогона, используя ограничительные поля блока
GENERITE. Для определения времени прогона будет использовать программный таймер,
рассчитанный на время в 62440 ед.вр., что составляет 3 года, по 40 недель в
году.
Рассмотрим блок-схему программы.
Оценка результатов
При фиксированном числе ремонтников и при достаточно малом числе -арендуемых
машин, расходы велики из-за снижения производительности ВЦ. При большом числе
Дарендуемых машин, расходы велики из-за их избыточного числа. Очевидно,
необходимо найти минимум между этими значениями (Рис.4.2).
При заданном числе арендуемых машин, число ремонтников так, как это представлено
на Рис.4.3.
При малом числе ремонтников, расходы велики из-за оплаты простаивающих
ремонтников.
В табл.4.2. показана величина нагрузки, проходящей через MOWON , как функция
"ремонтник-арендуемые машины". При заданном числе ремонтников нагрузка растёт
при увеличении числа арендуемых машины. Аналогично этому при заданном числе
арендуемых машины нагрузка растёт при увеличении числа ремонтников.
Таблица 4.2
Число занятых ремонтниковЧисло арендуемых машины
3 4 5
3 0,983 0,989 0,992
4 0,989 0,993 0,995
5 0,991 0,993 0,997
В табл.4.3 - 4.5 собраны значения расходов для соотношения "ре-
монтник-Дарендуемые машины" В табл. 4.3 показаны фиксированные значе- ния оплаты
труда ремонтников и арендуемой платы за машины..
Таблица 4.3
Число занятых ремонтниковЧисло -арендуемых машин
345
3180210240
4210240270
5240270300
В табл 4.4 указана стоимость уменьшения производительности,ВЦ.
Таблица 4.4
Число занятых ремонтниковЧисло -арендуемых машин
345
31368864
4885640
5735624
В табл.4. показана сумма этих расходов.
Таблица 4.5
Число занятых ремонтниковЧисло -арендуемых машин
345331629830442982963105312326324
Из последней таблицы можно сделать вывод о том, что наиболее выгодным
соотношением является 4 ремонтника и 4 арендуемые машины.
Скачали данный реферат: Захарий, Радован, Jastremskij, Ulita, Rodion, El'cov, Явленский.
Последние просмотренные рефераты на тему: реферат, реферат на тему русские, рефераты бесплатно скачать, bestreferat ru.
1
Разработать модель для эмитации производственной деятельности ВЦ при
планово-предупредительном обслуживании эксплуатируемого парка ЭВМ. По полученной
модели оценить распределение случ. переменной "число машин находящихся на
внеплановом ремонте".
Рассматриваемый ВЦ имеет в своем составе парк ЭВМ , обеспечивающий среднюю
производительность. и базирующийся на ЭВМ IBM PC с ЦП типа 386SX и 386DX. Кроме:
этого на ВЦ используются в качестве сетевых серверов машины типа 486DX и
Pentium, поддерживающие локальные сети, в которых осуществляется сложная
цифровая обработка больших цифровых массивов информации , кроме этого, решаются
задачи разработки цветных изображений.
На ВЦ принято планово-профилактическое обслуживание. ВЦ с небольшим парком ЭВМ и
поэтому ремонтом ЭВМ занимается всего один радио-механик ( в терминах СМО -
ремонтник). Это означает: что одновременно можно выполнять обслуживание только
одной ЭВМ. Все ЭВМ должны регулярно проходить профилактический осмотра. Число
эвм подвергающееся ежедневному осмотру согласно графика, распределено равнлмерно
и составляет от 2 до 6. Время, необходимое для осмотра и обслуживания каждой ЭВМ
примерно распределено в интервале от 1,5 до 2,5 ч. За это время необходимо
проверить саму ЗВМ, а также такие внешние ус-ва как цветные струйные принтеры,
нуждающиеся в смене или заправке катриджей красителем. Несколько ЭВМ имеют в
качестве внешних устройств цветные плоттеры (графопостроители) , у которых
достаточно сложный профилактический осмотр.
Рабочий день ремонтника длится 8 ч, но возможна и многосменная работа.
В некоторых случаях профилактический осмотр прерывается для устранения внезапных
отказов сетевых серверов, работающих в три смены, т.е 24 ч в сутки. В этом
случае текущая профилактическая работа прекращается, и ремонтник начинает без
задержки ремонта сервера. Тем не менее, машина-сервер, нуждающаяся в ремонте, не
может вытеснить другую машину-сервер, уже стоящую на внеплановом ремонте.
Распределение времени между поступлениями машин-серверов является пуассоновским
со средним интервалом равным 48 ч. Если ремонтник отсутствует в момент
поступления ЭВМ эти ЭВМ должны ожидать до 8ч утра. Время их обслуживания
распределено по экспоненте со средним значение в 25 ч.Необходимо построить
GPSS-модель для имитации производственной деятельности ВЦ. По полученной модели
необходимо оценить распределение случайной переменной "число машин-серверов,
находящихся на внеплановом ремонте". Выполнить прогон модели, имитирующей работу
ВЦ в течении 25 дней, введя промежуточную информацию по окончании каждых пяти
дней. Для упрощения можно считать, что ремонтник работает 8 ч в день без
перерыва, и не учитывать выходные. Это аналогично тому, что ВЦ работает 7 дней в
неделю.
Метод построения модели
Рассмотрим сегмент планового осмотра ЭВМ. (Рис.1.). Транзакты, подлежащие
плановому осмотру, являются пользователями обслуживающего прибора (ремонтник),
которым не разрешен его захват. Эти ЭВМ-транзакты проходят через первый сегмент
модели каждый день с 8 ч утра.ЭВМ-транзакт входит в этот сегмент. После этого
транзакт поступает в блок SPLIT, порождая необходимое число транзактов,
представляющих собой ЭВМ, запланированные на этот день для осмотра.Эти
ЭВМ-транзакты проходят затем через последовательность блоков
SEIZE-ADVANCE-RELEASE и покидают модель. .
Рис.1. Первый сегмент
Сегмент "внепланового ремонта"ЭВМ-серверы, нуждающийся во внеплановом ремонте,
двигаются в модель в своём собственном сегменте. Использование ими прибора
имитируется простой последовательностью блоков PREEMPT-ADVANCE- RETURN. Блок
PREEMPT подтверждает приоритет обслуживания ЭВМ-сервера (в блоке в поле В не
требуется PR) (Рис.2.)
Сегмент "начало и окончание" рабочего дня ВЦ. Для того, чтобы организовать
завершение текущего дня работы ВЦ по истечении каждого 8-ми ч дня и его начала в
8 ч утра, используется специальный сегмент. Т Транзакты-диспетчер входит в этот
сегмент каждые 24 ч (начиная с конца первого рабочего дня), Этот транзакт,
имеющий в моделе высший приоритет, затем немедленно поступает в PREEMPT, имеющий
в поле В символа PR. Диспетчеру, таким образом, разрешено захватывать
прибор-ремонтник вне зависимости от того, кем является текущий пользователь
(если он есть). Далее, спустя 16 ч, диспетчер освобождает прибор-ремонтник,
позволяя закончить ранее прерванную работу (при наличии таковой).(Рис.3.)
Сегмент "сбор данных для неработающих ЭВМ-серверов". Для сбора данных,
позволяющих оценить распределение числа неработающих ЭВМ-приборов, используется
этот отдельный сегмент. (Рис.4.)
Для этих целей используется взвешенные таблицы, которые позволяют вводить в них
в один и тот же момент времени наблюдаемые случайные величины. Для этих целей
включаются два блока - TABULATE, но если ввод в таблицу случаен (значение
величин і2), то этот подход не годен. В этом случае используется необязательный
элемент олеранд, называемый весовым фактором, обозначающий число раз, которое
величина, подлежащая табулированию, должна вводится в таблицу. Это позволяет
назначать разые веса различным наблюдаемым величинам.
Сегмент "промежуточная выдача". и окончание моделирования в конце дня
используется последовательность GENERATE-TERMINATE (Рис.5.).
Cегменты представлены на рис.1 - 5.
Логика работы модели
В моделе предполагается, что некоторое время, равное единице, соответствует 8 ч
утрапервого дня моделирования.Затем, первая (по счёту) ЭВМ выделенная
диспетчером для планового осмотра, входит в модель, выйдя из GENERANE. Далее,
каждая следующая первая ЭВМ, будет поступать в модель через 24 ч. ( блок 1, где
операнд А=1440 ед.врем., т.е числу минут в 24 ч. Первое появление 5 диспетчера
на ВЦ произойдет в момент времени, равный 481(блок 14). Это соответствует
окончанию восьмого часа. Второй раз диспетчер появится через 24 часа.
Транзакт обеспечивающий промежуточную выдачу: впервые появится во время, равное
6241, выходя из блока 25. Это число соответствует концу 8-го часа пятого дня
моделирования. ( 24 х 4 = 96 ч, 96 + 8 = 104. 104 х 60 =6240, 6240 + 1 = 6241
ч). Следующий транзакт появится через пять дней.
Блок 19 позволяет вести моделирование до времени в 35041, что соответствует 25
дням плюс 8 ч, выраженных в минутах.
Приоритетная схема представлена в табл.3.2.
Таблица 3.2.
Сегмент моделиИнтерпретация транзактовУровень приорит.
3Диспетчер3
1ЭВМ, прибывающие на плановый осмотр2
2ЭВМ-сервер, поступающая на внеплановый ремонт 2
4Транзакт, наблюдающий за очередью1
5Транзакты, обеспечивающие выдачу на печать 0
Чтение таблицы сверху вниз эквивалентно просмотру цепи текущиж событий с начала
и до конца моделирования
Результаты моделирования
Полученная статистика очереди ЭВМ-серверов на ремонт показывает, что на конец 25
дня среднее ожидания составляет 595 вр.ед., или около 19 ч. В среднем 0,221
ЭВМ-сервер ожидают обслуживания, и одновременно самое большее время 4 машины
находятся в ожидании. За 25 дней на внеп- лановый ремонт поступило 13 машин..
Табличная информация указывает, что 83 % времени это были ЭВМ-серверы ,
ожидающие внепланового ремонта, 12% времени в ожидании находилась одна машина,
4% - две машины, и только 0,52% и 0,05% времени одновременно ожидали три и
четыре машины. Для удобства результаты сведены в табл.3.3.
Таблица 3.3.
Число ожидающих ЭВМ Время ожида-ния в %
0 машин83
1 машина12
2 машины4
3 машины0,52
4 машины0,05
4. Минимизировать стоимость эксплуатационных расходов ВЦ средней
производительности.
Пусть в состав ВЦ входит 50 персональных компьютеров ( в дальнейшем просто ЭВМ).
Все ЭВМ работают по 8 ч в день, и по 5 дней в неделю. Любая из ЭВМ может выйти
из строя, и в любой момент времени. В этом случае её заменяют резервной ЭВМ либо
сразу, либо по мере её появления после восстановления. Неисправную ЭВМ
отправляют в ремонтную группу, ремонтируют, и она становится резервной.
Необходимо определить, сколько ремонтников следует иметь, и сколько машин
держать в ремонте, оплачивая их аренду. Парк резервных машин служит для подмены
вышедших из строя ЭВМ. принадлежащих ВЦ. Оп- лата арендных машин не зависит от
того находятся они в эксплуатации , или в резерве.
Цель анализа - минимизировать стоимость эксплуатации ВЦ. оплата рабочих в
ремонтной группе составляет 3,75$ в ч. Арендная плата за одну ЭВМ составляет 30$
в день. Почасовой убыток при использовании менее 50 ЭВМ оценивается примерно в
20$ за ЭВМ. этот убыток возникает из за общего снижения промзводительности ВЦ.
Считаем, что на ремонт вышедшей из строя ЭВМ уходит примерно 7ч, и распределение
этого времении равномерное.
Необходимо определить, сколько ремонтников следует иметь, и сколько машин
держать в ремонте, оплачивая их аренду. Парк резервных машин служит для подмены
вышедших из строя ЭВМ. принадлежащих ВЦ. Оплата арендных машин не зависит от
того находятся они в эксплуатации , или в резерве.
Среднее время наработки на отказ каждой ЭВМ распределено так же равномерно, и
составляет 157 ± 25 ч. Это время и распределение оди- наково для всех ЭВМ ВЦ,
так и для арендуемых ЭВМ.
Так как плата за аренду не зависит оттого, используют эти ЭВМ или нет, то и не
делается попыток увеличить число собственных ЭВМ ВЦ.
Необходимо построить GPSS модель такой системы и исследовать на ней дневные
расходы при разном числе арендуемых ЭВМ при при одинаковом числе ремонтников и
от числа ремонтников при постоянном числе арендуемых ЭВМ.
Метод построения модели
Определим ограничения, которые существуют в моделируемой системе. Существуют три
ограничения.
1. Число ремонтников в ремонтной группе.
2. Минимальное число ЭВМ, одновременно работающих на ВЦ.
3. Общее число ЭВМ циркулирующих в системе.
Для моделирования 1 и 2 ограничений удобно использовать многоканальные ус-ва (
термин взят из теории СМО), а третье ограничение-моделировать при помощи
транзактов. При этом ремонтники и работающие ЭВМ, находящиеся в производстве,
являются константами. При этом ЭВМ являются динамическими объектами,
циркулирующими в системе.
Рассмотрим состояния в которых может находиться ЭВМ. Пусть в настоящий момент
она находится в резерве. Тогда многоканальное ус-во NOWON (т.е. в работе)
используется для моделирования работающих ЭВМ, будет заполнено, и резервные
машины не могут войти в него. И тогда транзакт моделирующий резервную ЭВМ может
после многократных попыток войти в NOWON. Проходя через блоки ENTER и ADVANCE
транзакт моделирует время работы до тех пор, пока ЭВМ не выйдет из строя.
После выхода из строя ЭВМ транзакт покидает NOWON . При этом возникает
возможность у другой резервной ЭВМ войти в него,и если транзакт ожидает
возможность войти в многоканальное ус-во MEN (ремонтная группа. которая м.б.
представлена даже одним ремонтником). Выйдя из MEN транзакт становится
восстановленной ЭВМ. После ремонта он покидает MEN , освобождая ремонтника,
который может начать немедленно ремонт другой ЭВМ. Сам транзакт поступает в ту
часть модели, из которой он начинает попытки войти в NOWON.
Общее число ЭВМ циркулирующих в системе равно 50 плюс три ЭВМ резервных, и это
число надо задать до начала прогона, используя ограничительные поля блока
GENERITE. Для определения времени прогона будет использовать программный таймер,
рассчитанный на время в 62440 ед.вр., что составляет 3 года, по 40 недель в
году.
Рассмотрим блок-схему программы.
Оценка результатов
При фиксированном числе ремонтников и при достаточно малом числе -арендуемых
машин, расходы велики из-за снижения производительности ВЦ. При большом числе
Дарендуемых машин, расходы велики из-за их избыточного числа. Очевидно,
необходимо найти минимум между этими значениями (Рис.4.2).
При заданном числе арендуемых машин, число ремонтников так, как это представлено
на Рис.4.3.
При малом числе ремонтников, расходы велики из-за оплаты простаивающих
ремонтников.
В табл.4.2. показана величина нагрузки, проходящей через MOWON , как функция
"ремонтник-арендуемые машины". При заданном числе ремонтников нагрузка растёт
при увеличении числа арендуемых машины. Аналогично этому при заданном числе
арендуемых машины нагрузка растёт при увеличении числа ремонтников.
Таблица 4.2
Число занятых ремонтниковЧисло арендуемых машины
3 4 5
3 0,983 0,989 0,992
4 0,989 0,993 0,995
5 0,991 0,993 0,997
В табл.4.3 - 4.5 собраны значения расходов для соотношения "ре-
монтник-Дарендуемые машины" В табл. 4.3 показаны фиксированные значе- ния оплаты
труда ремонтников и арендуемой платы за машины..
Таблица 4.3
Число занятых ремонтниковЧисло -арендуемых машин
345
3180210240
4210240270
5240270300
В табл 4.4 указана стоимость уменьшения производительности,ВЦ.
Таблица 4.4
Число занятых ремонтниковЧисло -арендуемых машин
345
31368864
4885640
5735624
В табл.4. показана сумма этих расходов.
Таблица 4.5
Число занятых ремонтниковЧисло -арендуемых машин
345331629830442982963105312326324
Из последней таблицы можно сделать вывод о том, что наиболее выгодным
соотношением является 4 ремонтника и 4 арендуемые машины.
Скачали данный реферат: Захарий, Радован, Jastremskij, Ulita, Rodion, El'cov, Явленский.
Последние просмотренные рефераты на тему: реферат, реферат на тему русские, рефераты бесплатно скачать, bestreferat ru.
Категории:
1