Лекции по количественной оценке информации
| Категория реферата: Рефераты по информатике, программированию
| Теги реферата: евгений сочинение, матершинные частушки
| Добавил(а) на сайт: Jernesta.
Предыдущая страница реферата | 2 3 4 5 6 7 8 9 10 11 12 | Следующая страница реферата
3-й шаг. Первой группе присваивается символ 0, второй группе символ 1.
4-й шаг. Каждую из образованных подгрупп делят на две части таким образом, чтобы суммарные вероятности вновь образованных подгрупп были по возможности равны.
5-й шаг. Первым группам каждой из подгрупп вновь присваивается 0, а вторым - 1. Таким образом, мы получаем вторые цифры кода. Затем каждая из четырех групп вновь делится на равные (с точки зрения суммарной вероятности) части до тех пор, пока в каждой из подгрупп не останется по одной букве.
Согласно методике Хаффмена, для построения оптимального кода N символы первичного алфавита выписываются в порядке убывания вероятностей. Последние символов, где [6] и - целое число, объединяют в некоторый новый символ с вероятностью, равной сумме вероятностей объединенных символов Последние символы с учетом образованного символа вновь объединяют, получают новый, вспомогательный символ, опять выписывают символы в порядке убывания вероятностей с учетом вспомогательного символа и т. д. до тех пор, пока сумма вероятностей т оставшихся символов после -го выписывания в порядке убывания вероятностей не даст в сумме вероятность, равную 1. На практике обычно, не производят многократного выписывания вероятностей символов с учетом вероятности вспомогательного символа, а обходятся элементарными геометрическими построениями, суть которых сводится к тому, что символы кодируемого алфавита попарно объединяются в новые символы, начиная с символов, имеющих наименьшую вероятность. Затем с учетом вновь образованных символов, которым присваивается значение суммарной вероятности двух предыдущих, строят кодовое дерево, в вершине которого стоит символ с вероятностью 1. При этом отпадает необходимость в упорядочивании символов кодируемого алфавита в порядке убывания вероятностей.
Построенные по указанным выше (либо подобным) методикам коды с неравномерным распределением символов, имеющие минимальную среднюю длину кодового слова, называют оптимальным, неравномерным, кодами (ОНК). Равномерные коды могут быть оптимальными только для передачи сообщений с равновероятным распределением символов первичного алфавита, при этом число символов первичного алфавита должно быть равно целой степени числа, равного количеству качественных признаков вторичного алфавита, а в случае двоичных кодов - целой степени двух.
Максимально эффективными будут те ОНК, у которых
Для двоичных кодов
(52)
так как log22 = 1. Очевидно, что равенство (52) удовлетворяется при условии, что длина кода во вторичном алфавите
Величина точно равна Н, если , где п - любое целое число. Если п не является целым числом для всех значений букв первичного алфавита, то и, согласно основной теореме кодирования[7], средняя длина кодового слова приближается к энтропии источника сообщений по мере укрупнения кодируемых блоков.
Эффективность ОНК. оценивают при помощи коэффициента статистического сжатия:
(53)
который характеризует уменьшение количества двоичных знаков на символ сообщения при применении ОНК по сравнению с применением методов нестатистического кодирования и коэффициента относительной эффективности
(54)
который показывает, насколько используется статистическая избыточность передаваемого сообщения.
Для наиболее общего случая неравновероятных и взаимонезависимых символов
Для случая неравновероятных и взаимозависимых символов
ТЕМА 6. ОБНАРУЖЕНИЕ И ИСПРАВЛЕНИЕ ОШИБОК В СООБЩЕНИЯХ
Понятие об идее коррекции ошибокДля того чтобы в принятом сообщении можно было обнаружить ошибку это сообщение должно обладать некоторой избыточной информацией, позволяющей отличить ошибочный код от правильного Например, если переданное сообщение состоит из трех абсолютно одинаковых частей, то в принятом сообщении отделение правильных символов от ошибочных может быть осуществлено по результатам накопления посылок одного вида, например 0 или 1. Для двоичных кодов этот метод можно проиллюстрировать следующим примером:
10110 - переданная кодовая комбинация;
10010 - 1-я принятая комбинация;
Рекомендуем скачать другие рефераты по теме: реферат федерация, сочинение капитанская.
Категории:
Предыдущая страница реферата | 2 3 4 5 6 7 8 9 10 11 12 | Следующая страница реферата