Работа с бинарными данными и реестром Windows на платформе .NET
| Категория реферата: Рефераты по информатике, программированию
| Теги реферата: отзыв на дипломную работу, рефераты
| Добавил(а) на сайт: Ёлкин.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата
Эти классы предназначены для сжатия и распаковки данных, представленных массивом байт или его фрагментом. Применяемый алгоритм сжатия аналогичен описанному в RFC 1951 и реализованному в библиотеке zlib, но имеет ряд отличий, в частности, использует другой формат блока данных. Формат описан в исходном коде библиотеки в начале файла Compressor.cs.
Упаковка данных производится методом Compress() класса AcedDeflator, распаковка – методом Decompress() класса AcedInflator. Особенность работы с этими классами заключается в том, что их экземпляры не следует создавать напрямую вызовом конструктора. Лучше вместо этого использовать ссылку на единственный экземпляр каждого класса, которую можно получить, обратившись к статическому свойству Instance. Это ограничение связано с тем, что при создании экземпляров этих классов, особенно класса AcedDeflator, выделяется значительный объем памяти под внутренние массивы. Обычно не требуется использовать параллельно несколько экземпляров архиватора. Кроме того, частое перераспределение памяти ведет к снижению производительности. При первом обращении к свойству Instance создается один экземпляр соответствующего класса. Ссылка на него сохраняется в статическом поле класса и возвращается при каждом следующем обращении к свойству Instance. Когда возникает необходимость освобождения памяти, занятой внутренними массивами архиватора, можно вызвать статический метод Release для обнуления внутренней ссылки на экземпляр соответствующего класса. Тогда, если нет других ссылок на этот экземпляр, при следующей "сборке мусора" память будет возвращена операционной системе.
Для сжатия данных функцией AcedDeflator.Compress() в нее передается ссылка на массив байт с указанием смещения и длины сжимаемого фрагмента данных. Есть два варианта этой функции. В первом случае память под массив для сохранения упакованных данных распределяется самой функцией Compress(). Параметры beforeGap и afterGap этой функции задают отступ, соответственно, в начале и в конце выходного массива на случай, если кроме упакованных данных в него должна быть помещена еще какая-то информация. Во втором случае в функцию Compress() передается ссылка на уже существующий массив, в который должны быть записаны упакованные данные, а также смещение в этом массиве, с которого начинается запись. Максимальный размер упакованного фрагмента в случае, если данные несжимаемы, равен длине исходного фрагмента плюс 4 байта. Таким образом, длина приемного массива должна быть достаточна для хранения исходного фрагмента данных плюс 4 байта и плюс смещение в этом массиве. Функция Compress() возвращает размер сжатого фрагмента, т.е. число байт, сохраненное в выходном массиве.
Параметр типа AcedCompressionMode, передаваемый в функции Compress(), выбирает режим сжатия данных. Он принимает одно из следующих значений: NoCompression – данные не сжимаются, а просто копируются в входной массив с добавлением 4-байтной длины фрагмента для последующей его распаковки; Fastest – самый быстрый режим сжатия, который, тем не менее, может быть эффективен для некоторых типов данных; Fast – используется режим быстрого сжатия, когда максимальное расстояние между повторяющимися последовательностями во входном потоке принимается равным 65535 байтам; Normal – обычное сжатие, когда максимальное расстояние между последовательностями составляет 131071 байт; MaximumCompression – максимальное сжатие, доступное данному архиватору, предполагающее, что максимальное расстояние между повторяющимися последовательностями составляет 262143 байта.
Сжатые данные распаковываются методом AcedInflator.Decompress(). Прежде чем вызывать этот метод необходимо подготовить область памяти, достаточную для хранения результата. Узнать первоначальный размер сжатых данных можно вызовом статической функции GetDecompressedLength() класса AcedInflator. В нее передается ссылка на массив байт и смещение в этом массиве, с которого начинаются упакованные данные. Функция возвращает длину фрагмента данных после его распаковки. Затем можно создать массив байт достаточного размера и передать его в функцию Decompress() для заполнения распакованными данными. Эта функция принимает ссылку на исходный массив, содержащий сжатые данные, смещение в этом массиве, а также ссылку на приемный массив, в который выполняется распаковка, и смещение в приемном массиве. Функция возвращает число байт сохраненное в выходном массиве. Есть еще другой вариант функции Decompress(), в котором память под выходной массив распределяется самой функцией. Эта функция принимает параметры beforeGap и afterGap, которые задают число байт, которое надо зарезервировать, соответственно, в начале и в конце выходного массива.
Класс AcedMemoryWriter
Позволяет сохранять разнотипные данные в массиве байт, длина которого динамически увеличивается по мере добавления в него данных. Затем эти данные представляются в виде массива типа System.Byte[], который, кроме самих данных, содержит их контрольную сумму и, возможно, значение цифровой сигнатуры. Возвращаемый массив может быть упакован для экономии места и зашифрован для ограничения доступа к информации.
При создании экземпляра класса AcedMemoryWriter можно указать предполагаемое число байт, которое будет помещено в бинарный поток. Таким образом удается избежать лишнего перераспределения памяти под внутренний массив. В AcedMemoryWriter есть методы, названия которых начинаются с "Write", предназначенные для помещения в поток значений следующих типов: Boolean, Byte, Byte[], Char, DateTime, Decimal, Single, Double, Guid, Int16, Int32, Int64, SByte, String, TimeSpan, UInt16, UInt32, UInt64. Кроме того, можно добавлять сразу фрагменты массивов с элементами стандартных value-типов с помощью перегруженных методов Write(). При этом указывается индекс первого сохраняемого элемента массива и число записываемых элементов. Общее число байт, помещенное в бинарный поток, возвращается свойством Length класса AcedWriter. Метод Reset() обнуляет длину потока, позволяя заполнить его новыми данными без пересоздания экземпляра класса AcedMemoryWriter.
Текущая длина внутреннего массива возвращается и устанавливается свойством Capacity. Ссылку на внутренний массив можно получить вызовом функции GetBuffer(). Правда, эта ссылка изменяется при каждом перераспределении памяти, т.е. при каждом изменении свойства Capacity. В некоторых случаях, например, при чтении данных из файла с помощью FileStream.Read(), удобнее передать ссылку на внутренний массив непосредственно в метод FileStream.Read(), вместо того, чтобы считывать данные в промежуточный массив, а затем переписывать их в поток методом Write(). Чтобы сделать это быстрее, нужно сохранить во временной переменной текущую длину потока, т.е. значение свойства Length, затем вызвать метод Skip(), передавая в него число байт, которое будет прочитано из файла. При этом длина потока увеличится на указанное число байт без фактического заполнения их данными. Теперь можно получить ссылку на внутренний массив из функции GetBuffer(), а затем вызвать метод FileStream.Read(), передавая в него полученную ссылку на массив и значение, сохраненное во временной переменной, в качестве смещения в массиве.
Когда все необходимые данные записаны в бинарный поток, вызывается функция ToArray(), возвращающая результирующий массив данных. Имеется несколько вариантов этой функции, которые отличаются набором принимаемых параметров. Наиболее функциональным является вариант, принимающий два параметра: compressionMode типа AcedCompressionMode и keyGuid типа System.Guid. Вызов функции ToArray() с одним параметром эквивалентен передаче значения Guid.Empty в параметре keyGuid. Вызов этой функции без параметров эквивалентен передаче значения NoCompression в параметре compressionMode и значения Guid.Empty в параметре keyGuid. Рассмотрим подробнее, чем управляют эти параметры и как они влияют на сохраняемый формат данных.
Параметр типа AcedCompressionMode выбирает режим сжатия данных. Его значение соответствует одной из констант, рассмотренных выше при описании класса AcedDeflator. Если этот параметр равен значению NoCompression, данные бинарного потока не сжимаются. Параметр keyGuid задает ключ шифрования для выходного массива байт. Если этот параметр равен Guid.Empty, шифрование не выполняется. Значение типа System.Guid используется в качестве ключа шифра по нескольким причинам. Во-первых, легко сгенерировать новое уникальное значение ключа вызовом функции Guid.NewGuid(). Во-вторых, значения такого типа имеют общепринятое строковое представление. В-третьих, Guid легко получить из значения односторонней хеш-функции RipeMD-160. Если ключ шифра вводится пользователем с клавиатуры в виде строки символов, необходимо преобразовать эту строку в цифровую сигнатуру вызовом AcedRipeMD.Compute(), а затем в значение типа System.Guid вызовом метода ToGuid() класса AcedRipeMD. Шифрование данных выполняется методами классом AcedCast5. Но прежде, чем шифровать данные, для них вычисляется значение 20-байтной сигнатуры RipeMD-160, которое помещается в выходной массив вместе с данными и используется при последующем чтении из потока для проверки того, что данные в потоке расшифрованы с правильным ключом и что они не были повреждены.
Последовательность действий при вызове метода ToArray() класса AcedMemoryWriter следующая. Сначала выполняется упаковка данных классом AcedDeflator. Затем для полученного массива рассчитывается значение односторонней хеш-функции RipeMD-160 методами класса AcedRipeMD. Это значение помещается в выходной массив перед данными. Потом данные шифруются методами класса AcedCast5. Значение цифровой сигнатуры не шифруется. На заключительном этапе для всего содержимого выходного массива рассчитывается контрольная сумма Адлера вызовом метода AcedBinary.Adler32(), которая размещается в первых 4-х байтах выходного массива. Заполненный таким образом массив возвращается как результат функции ToArray(). В зависимости от параметров, могут опускаться этапы упаковки и/или расчета цифровой сигнатуры и шифрования данных.
Пример использования класса AcedMemoryWriter:
private byte[] PutData()
{
AcedMemoryWriter w = new AcedMemoryWriter();
w.WriteByteArray(new byte[] {5, 6, 7, 8, 9});
w.WriteInt16(10000);
int[] otherValues = new int[120];
for (int i = 0; i < 120; i += 3)
{
otherValues[i] = 1;
otherValues[i + 1] = 2;
otherValues[i + 2] = 3;
}
Рекомендуем скачать другие рефераты по теме: контрольные бесплатно, выборочное изложение.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата