Разработка корпоративной ИВС
| Категория реферата: Рефераты по информатике, программированию
| Теги реферата: ответы 5 класс, реферат на тему орган
| Добавил(а) на сайт: Kalmykov.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 | Следующая страница реферата
Рис.1.4.1 Обаций формат кадра LAP-B
Второй уровень протоколов отвечает за эффективную и надежную передачу данных в соединении "точка-точка", т.е. между соседними узлами сети Х.25. Данным протоколом обеспечивается защита от ошибок при передаче между соседними узлами и управление потоком данных (если принимающая сторона не готова принимать данные, она извещает об этом передающую сторону, и та приостанавливает передачу). Кроме того, данный протокол содержит параметры, меняя значения которых можно получить оптимальный по скорости передачи режим в зависимости от протяженности канала между двумя точками (времени задержки в канале) и качества канала (вероятности искажения информации при передачи). Примером такого протокола может служить протокол управления каналом HDLC. Для реализации всех указанных выше функций в протоколах второго уровня вводится понятие "кадра" ("frame"). Кадром называется порция информации (битов), организованная определенным образом. HDLC использует три типа кадров: ненумерованные управляющие U-кадры; нумерованные супервизорные (контролирующие) S-кадры; нумерованные информационные I-кадры. Рассмотрим I-кадр LAPB. На рисунке 1.4.1 представлен формат этого информационного кадра Начинает кадр флаг, т.е. последовательность би тов строго определенного вида, являющаяся раз делителем между кадрами. Затем идет поле адреса, которая в случае двухточечного соединения сводится к адресу "А" или адресу "В". Далее идут поле типа кадра которое указывает, несет ли кадр в себе информацию, либо является чисто служебным, т.е. например тормозит поток информации, либо извещает передающую сторону о приеме/неприеме предыдущего кадра. В кадре имеется также поле номера кадра. Кадры нумеруются циклически. Это означает, что при достижении определенного порогового значения, нумерация опять начинается с нуля. И наконец, заканчивается кадр проверочной последовательностью. Последовательность подсчитывается по определенным правилам при передаче кадра. По этой последовательности на приеме происходит поверка, не произошло ли искажения информации при передаче кадра. При настройке параметров протокола к физическим характеристикам линии можно менять длину кадра. Чем короче кадр, тем меньше вероятность того, что он будет искажен при передаче. Однако если линия хорошего качества то лучше работать более длинными информационными кадрами, т.к. уменьшается процент избыточной информации, передаваемой по каналу (флаг, служебные поля кадра). Кроме того, можно менять число кадров, которое передающая сторона посылает, не ожидая подтверждения от принимающей стороны. Этот параметр связан с т.н. "модулем нумерации", т.е. значением порога, достигнув которого нумерация снова начинается с нуля. Это поле может быть равно 8 (для тех каналов, задержка передачи информации в которых не слишком велика) либо 128 (для спутниковых каналов, например, когда задержка при передаче информации по каналу велика).
1.4.2.3. Сетевой уровень
И наконец, третий уровень протоколов - "сетевой". Этот уровень наиболее интересен в контексте обсуждения сетей X.25, так как именно он определяет в первую очередь специфику этих сетей.
Функционально данный протокол отвечает в первую очередь за маршрутизацию в сети передачи данных Х.25, за доведение информации от "точки входа" в сеть до "точки выхода" из нее. На своем уровне протокол третьего уровня также структурирует информацию, т.е. разбивает ее на "порции". На третьем уровне порция информации называется "пакетом" ("packet"). Структура пакета во многом аналогична структуре кадра(см. рис 1.4.2). В пакете имеется свой
Рис. 1.4.2 Обаций формат пакета.
модуль нумерации, свои поля адреса типа пакета, своя контрольная последовательность. При передаче пакет помещается в поле данных информационных кадров (кадров второго уровня). Функционально поля пакета отличаются от соответствующих полей кадра. В первую очередь это касается поля адреса, которое в пакете состоит из 15 цифр. Это поле пакета должно обеспечивать идентификацию абонентов в рамках всех сетей пакетной коммутации по всему миру. Рекомендация Х.121 определяет структуру сетевого адреса.
Введя термин "пакет", мы можем перейти к следующему вопросу, а именно: как же происходит доведение информации от одного абонента до другого через сеть X.25? Для этого используется т.н. метод "коммутации пакетов" ("packet switching"). В связи с этим сети Х.25 еще называют сетями пакетной коммутации. Этот метод реализуется посредством установления между абонентами т.н. виртуальных, т.е. логических (в отличие от физических) соединений (virtual circuits). Для того, чтобы передать информацию от абонента А к абоненту В, между ними прежде устанавливается виртуальное соединение, т.е. происходит обмен пакетами "запрос вызова" ("call request") - "вызов принят" ("call accept"). После этого между двумя абонентами может производиться обмен информацией. Виртуальные соединения могут быть как постоянными (permanent), так и коммутируемыми (switched). Коммутируемое соединение устанавливается под каждый сеанс обмена информацией, что не требуется для постоянного виртуального соединения. Тут могут быть приведены прямые аналогии из области телефонии. Действительно, если вы имеете выделенный ("постоянный)" теле фонный канал между двумя абонентами, вам не надо каждый раз набирать номер вашего абонента, вам достаточно лишь снять трубку телефона. Количество виртуальных соединений, которые могут одновременно поддерживаться на базе одного физического канала, зависит от конкретного типа оборудования, используемого для поддержания таких соединений. Это вполне понятно, т.к. для поддержания каждого соединения на этом оборудовании должен резервироваться определенный ресурс (например - оперативная память).
1.4.3. Преимущества сетей Х.25. Frame Relay как продолжение Х.25
Метод коммутации пакетов, лежааций в основе сетей Х.25, определяет основные преимущества таких сетей, или другими словами, их область применения. В чем же это преимущество? Рассматриваемые сети позволяют в режиме реального времени разделять один и тот же физический канал нескольким абонентам в отличие, например, от случая использования пары модемов, соединенных через канал того или иного типа. Действительно, если у вас и вашего абонента на компьютерах установлены модемы, вы можете обмениваться с ним информацией. Однако, используемой вами телефонной линией одновременно с вами не сможет воспользоваться уже никто другой. Благодаря реализованному в сетях Х.25 механизму разделения канала одновременно между несколькими пользователями во многих случаях оказывается экономически выгодней для передачи данных пользоваться сетью X.25, производя оплату за каждый байт переданной или полученной информации, а не оплачивать время использования телефонной линии. Особенно ощутимо это преимущество может быть для международных соединений.
Рис 1.4.3. Канал с логическим мультиплексмрованием
Метод разделения физического канала между абонентами в сетях Х.25 называют еще мультиплексированием канала точнее "логическим" или "статистическим" мультиплексированием (рис. 1.4.3.).
Термин "логическое" мультиплексирование" вводится, чтобы отличить этот метод от временного разделения канала, например. При временном разделении канала каждому из разделяющих его абонентов выделяется в рамках каждой секунды строго определенное количество миллисекунд для передачи его информации. При статистическом разделении канала нет строго регламентированной степени загрузки каждым из абонентов канала в каждый определенный момент времени. Эффективность использования статистического мультиплексирования зависит от статистических или вероятностных характеристик мультиплексируемого потока информации. Означает ли это, что вам, прежде чем подключаться к уже действующей сети Х.25 или начинать создавать свою сеть, необходимо проводить детальный анализ вероятностных характеристик потоков информации, циркулирующих в вашей системе?
Конечно нет. Такие расчеты уже проведены. Имеется большой опыт использования сетей Х.25. Известно, что использование сети Х.25 эффективно для широкого спектра задач передачи данных. Среди них и обмен сообщениями между пользователями, и обращение большого количества пользователей к удаленной базе данных а также к удаленному хосту электронной почты, связь локальных сетей (при скоростях обмена не более 512 Кбит/с), объединение удаленных кассовых аппаратов и банкоматов. Другими словами, все приложения, в которых трафик в сети не является равномерным во времени.
Какие еще преимущества дает сеть X.25? Может быть одно из самых важных достоинств сетей построенных на протоколах, описанных в рекомендации Х.25, состоит в том что они позволяют передавать оптимальным образом данные по каналам телефонной сети общего пользования (выделенным и коммутируемым). Под "оптимальностью" имеется в виду достижение максимально возможных на указанных каналах скорости и достоверности передачи данных.
При улучшении качества каналов становится возможным переход к сетям, базирующимся на других протоколах. Чтобы лучше понять это, можно рассмотреть пример протоколов, являющихся в определенном смысле дальнейшим развитием протоколов Х.25, а именно протокола Frame Relay (в русскоязычной литературе этот термин часто переводится, как "ретрансляция кадров"). В странах Западной Европы в настоящее время происходит повсеместное развитие сетей, базирующихся на этом протоколе.
Протокол Frame Relay рассчитан на каналы существенно более высокого качества, поэтому в них меньшее внимание уделяется защите от ошибок при передаче. Переповтор искаженных пакетов происходит только на всем участке: точка входа в сеть - точка выхода из сети. Если же искаженный кадр обнаруживается при приеме кадра на одном из внутренних участках сети, то этот кадр просто стирается без запроса его повторной передачи. Ясно, что в том случае, когда ошибок много, такой протокол обеспечит более низкие скорости передачи, чем протоколы Х.25.
Большинство фирм, выпускающих сегодня оборудование сетей Х.25, выпускает также и оборудование сетей Frame Relay. Часто в одном и том же изделии часть каналов может работать по стандарту Х.25, а часть - по стандарту Frame Relay. Есть и такое оборудование (производимое фирмой RAD data communications, например), в каждом изделии которого, независимо от числа каналов и цены, реализованы как протоколы Х.25, так и протокол Frame Relay. Это очень удобно при создании магистральной сети, работающей, скажем, на оптоволоконных или спутниковых каналах связи и сопряжении ее с периферийной сетью, базирующейся на обычных телефонных каналах.
Эффективным механизмом оптимизации процесса передачи информации через сети Х.25 является механизм альтернативной маршрутизации. Возможность задания помимо основного маршрута альтернативных, т.е. резервных имеется в оборудовании Х.25, производимом практически всеми фирмами. Различные образцы оборудования отличаются по алгоритму перехода к альтернативному маршруту, а также по количеству альтернативных маршрутов. В некоторых типах оборудования, например, переход к альтернативному маршруту происходит только в случае полного отказа одного из звеньев основного маршрута. В других - переход от одного маршрута к другому происходит динамически в зависимости от загруженности маршрутов, и решение принимается на основании многопараметрической формулы (оборудование фирмы Motorola ISG, например). За счет альтернативной маршрутизации может быть значительно увеличена надежность работы сети. Однако это означает, что между любыми двумя точками подключения пользователя к сети должно быть по крайней мере два различных маршрута. В связи с этим, построение сети по звездообразной схеме можно считать вырожденным случаем. К сожалению, такая топология сети еще достаточно часто используется в тех городах, в которых есть только один узел сети Х.25, установленный в рамках той или иной сети общего пользования.
1.4.4. Доступ пользователей к сетям Х.25. Сборщики-разборщики пакетов
Рассмотрим теперь, каким образом на практике реализуется доступ различных типов пользователей к сети Х.25.
Прежде всего, возможна организация доступа в пакетном режиме (в соответствии с рекомендацией X.25). Для осуществления доступа с компьютера в сеть в пакетном режиме можно, например, установить в компьютер специальную плату, обеспечивающую обмен данными в соответствии со стандартом Х;25. Наиболее популярной сейчас платой является плата компании Eicon Technology. Это обуславливается тем, что данной компанией разработан широкий спектр программ, обеспечивающих функционирование платы в рамках различных операционных систем, как на отдельных компьютерах так и на компьютерах, включенных в ЛВС.
Для подключения ЛВС через сеть Х.25 используются также платы компаний Microdyne, Newport Systems Solutions и др. Кроме того, для доступа из ЛВС в сеть Х.25 могут использоваться мосты/маршрутизаторы удаленного доступа, поддерживающие протокол Х.25, выполненные в виде отдельных устройств (standalone device). Преимущества таких устройств по сравнению с встраиваемыми в компьютер платами, помимо большей производительности заключается также и в том, что они не требуют установки специального программного обеспечения, а сопрягаются с ЛВС по стандартному интерфейсу ЛВС, что позволяет реализовать более гибкие и универсальные решения. Правда и цена таких устройств обычно выше, чем у встраиваемых в компьютер аналогов. Вообще, подключение пользовательского оборудования к сети в пакетном режиме очень удобно, когда требуется многопользовательский доступ к этому оборудованию через сеть.
Рис 1.4.4. Доступ пользователей к сетям Х.25
Действительно, плата фирмы Eicon обеспечивает возможность поддерживать одновременно до 254 логических соединений через 1 порт платы. Это, например, подключение удаленного хоста базы данных, либо соединение ЛВС. Если же вам надо подключить компьютер к сети в монопольном режиме, то это подключение производится по другим стандартам. Это стандарты Х.З, Х.28, Х.29, которые определяют функционирование специальных устройств доступа в сеть - "сборщиков/разборщиков пакетов - СРП (packet assembler/dissasembler -PAD)". На практике термин "СРП" мало употребим, поэтому и мы в качестве русскоязычного термина будем пользоваться термином "ПАД". ПАДы используются для доступа в сеть абонентов в асинхронном режиме обмена информацией, т.е. через последовательный порт компьютера (непосредственно, или с применением модемов). ПАД обычно имеет несколько асинхронных портов и один синхронный порт (порт X.25). ПАД накапливает поступающие по асинхронным портам данные, упаковывает их в пакеты и передает через порт Х.25 (рис. 1.4.4.).
Выполняемыми задачами определяются конфигурируемые параметры ПАДа. Эти параметры описываются стандартом Х.З. Совокупность параметров носит название "профайла" ("profile"). Стандартный набор состоит из 22 параметров. Функциональное назначение данных параметров одинаково для всех ПАДов. В профайл входят параметры, определяющие скорость обмена по асинхронному порту, параметры, характерные для текстовых редакторов (символ удаления знака и строки, символ вывода на экран предыдущей строки и т.п.), параметры, включающие режим автоматической добивки строки незначащими символами (для синхронизации с медленными терминалами), а также параметр, которым определяется условие, при выполнении которого заканчивается формирование пакета.
Окончание формирования пакета может производиться по накоплении определенного числа байтов (обычно длина пакета равняется 128 байтам), либо по получении определенного символа (например, символа возврата каретки). Кроме обязательного набора из 22 параметров в большинстве ПАДов имеются дополнительные параметры, определяющие число битов четности при асинхронной передаче, длину знака и т.п. В некоторых ПАДах имеются уже готовые профайлы, один из которых настроен на работу с текстовыми данными, а другой т.н. "прозрачный", т.е. профайл, предназначенный для передачи двоичных данных.
Управление ПАДом в этом случае производится поднятием и сбрасыванием цепей физического стыка (RS-232, V.35или какого либо другого). Двух указанных стандартных профайлов достаточно для широкого круга приложений.
Обмениваясь данными с удаленным абонентом через сеть Х.25, пользователь ее практически "не видит". Работа через сеть Х.25, в принципе, не отличается для пользователя от работы с обычным коммуникационным пакетом. Параметры ПАДа настраиваются администратором сети в соответствии с пожеланиями пользователя. Единственной специфичной командой, которую должен выдать абонент при подключении к сети Х.25, это команда соединения с нужным ему абонентом. Для этого пользователь набирает сетевой адрес абонента. Адрес может быть представлен как набором цифр, так и некоторым идентификатором, выбираемым из мнемонических соображений. Обычного для каждого входного асинхронного канала ПАДа может быть задан свой профайл. Следует еще, наверное, упомянуть обеспечиваемую обычно в ПАДе возможность защиты по паролю от несанкционированного обращения к сети по входным (асинхронным) портам ПАДа. Конкретная реализация этой защиты (число уровней - "пароль пользователя", "пароль администратора" и т.д.) может быть различна у различных ПАДов.
Отдельный набор параметров описывает функционирование ПАДа при передаче информации через порт Х.25 в сеть. Тут могут быть заданы различные тайм-ауты (по разрыву соединения в случае его неактивности, таймауты повторной передачи пакета и т.д.), параметры, определяющие длину пакета, число пакетов и число кадров, которые могут быть переданы без получения подтверждения на них от принимающей стороны, сетевой адрес, соответствуюаций порту Х.25 ПАДа.
1.4.5. Узлы сети X.25. Центры коммутации пакетов
Параметры, описывающие канал X.25 ПАДa являются немаловажными и для узловых элементов собственно сети Х.25, называемых Центрами Коммутации Пакетов - ЦКП (packet switch), однако, ими список параметров ЦКП, конечно, не исчерпывается. При конфигурировании ЦКП обязательно требуется заполнить "таблицу маршрутизации" (routing table). Эта таблица определяет, через какой из портов ЦКП направляются поступившие в ЦКП пакеты в зависимости от адресов, содержащихся в этих пакетах. В таблице за -даются как основные, так и альтернативные маршруты. Кроме того, важной функцией некоторых ЦКП является функция стыковки сетей ("шлюзования сетей"). Действительно, в мире существует великое множество сетей Х.25 как общего пользования, так и частных (private) или иначе - "корпоративных", "ведомственных". Естественно, в различных сетях могут быть установлены различные значения параметров передачи по каналам Х.25 (длина кадра и пакета величины пакетов, си-стема адресации и т.д.). Для того, чтобы все эти сети могли стыковаться друг с другом, была разработана рекомендация X.75, определяющая правила согласования параметров при переходе из сети в сеть. Сопряжение вашей сети с соседней сетью рекомендуется производить через ЦКП, в котором с достаточной полнотой реализована поддержка шлюзовых функций. Например, этот ЦКП должен уметь "транслировать" адреса при переходе из одной сети в другую. Эта функция обычно реализуется с помощью конфигурирования специальной таблицы трансляции адресов в шлюзовом ЦКП. Для ЦКП, не сопрягающихся с узлами другой сети пакетной коммутации, наличие шлюзовых функций не является обязательным.
1.4.6. Дополнительные услуги, предоставляемые сетями Х.25
Рассмотрим теперь т.н. необязательные услуги (faci litie s), поддерживаемые оборудованием сетей Х.25. Несмотря на свое название, многие из этих параметров в настоящее время реализуются в
большей части оборудования сетей Х.25 и являются крайне полезными при функционировании большой и, особенно, коммерчески используемой сети Х.25. Это, например, параметры, которые позволяют пользователю при установлении соединения через сеть пользоваться своим уникальным идентификатором (NUI - network user identificator). Чтобы эта услуга поддерживалась сетью, необходимо, чтобы ПАД, через который происходит доступ, позволял вместе с адресом абонента-получателя вводить собственный NUI. Кроме того, ПАД и/или ЦКП должен анализировать при установлении соединения, абоненты с какими именно NUI эти соединения устанавливают. Это оказывается особенно полезно, когда надо идентифицировать соединения, устанавливаемые через один и тот же канал ПАДа различными пользователями, получающими доступ к этому каналу по коммутируемой телефонной сети. Идентификация абонента используется потом, например, для начисления платы за передачу/прием информации. Если вы хотите коммерчески использовать вашу сеть, то вам также надо быть уверенными, что в приобретаемых вами ПАДах/ЦКП реализованы функции накопления тарификационных записей (billing records). Обычно тарификационная запись - это некоторый объем информации, который хранится в оперативной памяти ПАДа/ЦКП. Запись "открывается" при установлении каждого нового соединения. При разрыве соединения запись закрывается и отсылается в центр тарификации сети, в котором записи накапливаются и анализируются. Для коммерческого использования сети важна также поддержка оборудованием таких необязательных услуг, как "реверсивная тарификация". Это услуга, которая определяет режим обмена информацией, при котором плата взимается не с вызывающего абонента, а с абонента-получателя. Имеется также услуга "запрет реверсивной тарификации".
В заключение упомянем о не так часто встречающейся функции оборудования сетей Х.25, а именно - о поддержке по асинхронным каналам специальных модификаций протоколов Х.З, Х.28 - протоколов Х3.28, T3.POS, VISA2, используемых в сетевых кассовых аппаратах/устройствах идентификации кредитных карточек (POS-терминалах) для связи с удаленным центром. Ранее мы уже упоминали о том, что объединение POS-терминалов через сеть Х.25 является стандартным решением. POS-терминалы могут подключаться к ПАДу с использованием стандартных асинхронных протоколов Х.З, Х.28, однако в этом случае эффективность использования канала несколько снижается, т.к. протокол Р0S-терминала реализующего свой механизм защиты от ошибок "накладывается" на протокол Х.25. В случае поддержки протоколов POS-терминалов ПАД эмулирует для POS-терминала хост, используя специфический POS-протокол только на участке от терминала до ПАДа. Через сеть информация передается уже в соответствии только с правилами протоколов Х.25. Из оборудования, поддерживающего указанные протоколы, можно упомянуть оборудование канадской фирмы Memotec Communications. Кроме POS-протоколов ПАДы могут также поддерживать ряд других протоколов, не относящихся к протоколам сетей Х.25, а именно - протоколы сетевой архитектуры SNA фирмы IBM, протоколы Unisys и др. Однако такая поддержка реализована не во всех изделиях х.25.
1.5. Выбор топологии сети
1.5.1. Варианты построения.
В п.1.3.8 было показано, что лучший способ построения сети- это использование Владимирской региональной сети передачи данных Global X.25. Рассмотим варианты подключения ЛВС администрации Владимирской области(АВО) и ЛВС(РС) районов к этой сети. Фактически, нам надо обеспечить удаленный доступ районных пользователей к центральной, или офисной ЛВС, а именно с ЛВС АВО.
Надо сразу отметить следующий факт. Удаленный пользователь, будь то одиночный РС или группа РС, объединенных в ЛВС может поддерживать только три разновидности удаленного доступа[14,]. Среди них: эмуляция терминала, удаленное управление, или удаленный контроль и удаленный узел. Эмуляция терминала безвозвратно устарела, поэтому мы о ней говорить не будем. Остаются два других варианта. Но какой из них лучше? Кратко посмотрим, что они из себя представляют и проанализируем ситуацию с целью выбора наиболее оптимального решения.
Рекомендуем скачать другие рефераты по теме: возрождение реферат, риск реферат.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 | Следующая страница реферата