Вычисление определённых интегралов
| Категория реферата: Рефераты по информатике, программированию
| Теги реферата: акт, решебники за 8 класс
| Добавил(а) на сайт: Juhancev.
Предыдущая страница реферата | 1 2 3 | Следующая страница реферата
Блок-схема 2: Основная программа.
Текст программы и результаты счета.
program Kursovoy;
const A1=5/9; A2=8/9; t=-0.77459;{константы для взятия интеграла методом
Гаусса}
type func=function(x,c,d:real):real;{прототип функции от которой берется
интеграл}
var a,b,eps:real;{пределы интегрирования и точность вычисления} c:array[1..4] of real;{параметры функции, от которой берется интеграл} d:array[1..5] of real;{взяты из таблицы 2}
function f_test(x,c,d:real):real;{тестовая функция sin(x)}
begin{интеграл от 0 до пи теоретически равен 2} f_test:=sin(x);
end;
function f1(x,c,d:real):real;{первая функция из таблицы 2}
begin f1:=exp(d*x/2)*sqr(cos(c*x));
end;
function f2(x,c,d:real):real;{вторая функция из таблицы 2}
begin f2:=sqr(x*ln(c*d*x));
end;
{Функция взятия интеграла от функции f, прототип(вид) которой описан в типе
func a,b- пределы интегрирования, cm,dm-параметры c и d функции f, eps
-точность вычислений k-число итераций, за которые удалось найти интеграл }
function Integral(f:func;a,b,cm,dm,eps:real; var k:integer):real;
var S,z,h,c,d,l,x,x1,x2,x3:real;{S-текущее приближенное значение интеграла, z-предыдуще приближенное значение интеграла,h-шаг интегрирования, c,d,l,x,x1,x2,x3-вспомогательные переменные см. стр.25 методички} i,n:integer;{i-счетчик цикла, n-число интервалов интегрирования}
begin n:=1; S:=0; k:=0; repeat k:=k+1;{увеличиваем число итераций} z:=S; {предыдущее значение интеграла равно текущему} n:=n*2;{в два раза увеличиваем число интервалов интегрирования} h:=(b-a)/n; x:=a; S:=0; c:=h/2; l:=c*t;{определение шага
интегрирования, начального значения x, сам интеграл сначала равен 0, вспомогательные переменные считаем } for i:=0 to n-1 do{перебираем все интервалы интегрирования} begin d:=x+c; x1:=d-l;x2:=d; x3:=d+l;{вычисляем значения абцисс узлов, выбранных из условия обеспечения минимума погрешности интерполяции}
S:=S+A1*(f(x1,cm,dm)+f(x3,cm,dm))+A2*f(x2,cm,dm);{добавляем к сумме} x:=x+h;{переходим на новый интервал интегрирования} end;
S:=S*c;{умножаем полученную сумму на h/2} until (abs(z-S)=14);{выходим из цикла, если относительная погрешность предыдущего и текущего интегралов меньше
заданной точности или если число итераций превысило допустимое}
Integral:=S;{возвращаем значение полученного интергала}
end;
var i,j,n:integer;
begin
{вычисляем значение проверочного интеграла, передавая в функцию Integral
имя вычисляемой функции в данном случае f_test, интервал интегрирования a=0 b=3.14159 cm=0 dm=0(последние два параметра в данном случае могут быть любыми,т.к.
f_test от них не зависит) eps=1e-3(точность), в параметр n, по выходе из функции вычисления
интеграла будет записано число итераций} writeln('Проверочный интеграл от 0 до пи sin(x)dx
=',Integral(f_test,0,3.14159,0,0,1e-3,n):7:5,
' ',n,' итераций'); c[1]:=0.9; c[2]:=1; c[3]:=1.05; c[4]:=1.1;{ввод параметров для первой
функции} d[1]:=2.4; d[2]:=2.5; d[3]:=2.6; eps:=1e-4; a:=0; b:=3.14159; writeln('Интеграл от ',a:1:0,' до ',b:5:3,' функции f1 ','с
точностью',eps:5,' при:'); for i:=1 to 4 do{перебираем параметр с} for j:=1 to 3 do{перебираем параметр d} begin
{вычисляем значение первого интеграла, передавая в функцию Integral имя
вычисляемой функции в данном случае f1, интервал интегрирования a=0 b=3.14159 cm=c[i] dm=d[i](последние два параметра перебираются в цикле и не равны
0, т.к. f1 от них зависит) eps=1e-4(точность), в параметр n, по выходе из функции вычисления
интеграла будет записано число итераций} writeln('с=',c[i]:4:2,' d=',d[j]:4:2,' равен
',Integral(f1,a,b,c[i],d[j],eps,n):8:5, ' ',n, ' итераций'); end; readln;{ожидаем нажатия клавиши enter, иначе все выводимые данные не
поместятся на один экран} c[1]:=3; c[2]:=3.2; c[3]:=3.4; c[4]:=3.5;{ввод параметров для первой
функции} d[1]:=0.5; d[2]:=0.4; d[3]:=0.85; eps:=1e-3; a:=1; b:=exp(1);{b=e} writeln('Интеграл от ',a:1:0,' до ',b:5:3,' функции f2 ','с
точностью',eps:5,' при:'); for i:=1 to 4 do{перебираем параметр с} for j:=1 to 3 do{перебираем параметр d} begin
{вычисляем значение второго интеграла, передавая в функцию Integral имя
вычисляемой функции в данном случае f2, интервал интегрирования a=1 b=e cm=c[i] dm=d[i](последние два параметра перебираются в цикле и не равны
0, т.к. f2 от них зависит) eps=1e-3(точность), в параметр n, по выходе из функции вычисления
интеграла будет записано число итераций} writeln('с=',c[i]:4:2,' d=',d[j]:4:2,' равен
',Integral(f2,a,b,c[i],d[j],eps,n):8:5, ' ',n, ' итераций'); end;
end.
Результаты счета.
Проверочный интеграл от 0 до пи sin(x)dx =2.00000 2 итераций
Интеграл от 0 до 3.142 функции f1 с точностью 1.0E-0004 при: с=0.90 d=2.40 равен 17.12437 3 итераций с=0.90 d=2.50 равен 19.52435 3 итераций с=0.90 d=2.60 равен 22.28654 3 итераций с=1.00 d=2.40 равен 22.33040 2 итераций с=1.00 d=2.50 равен 25.49172 2 итераций с=1.00 d=2.60 равен 29.12609 3 итераций с=1.05 d=2.40 равен 24.19102 3 итераций с=1.05 d=2.50 равен 27.60541 3 итераций с=1.05 d=2.60 равен 31.52694 3 итераций с=1.10 d=2.40 равен 25.37969 3 итераций с=1.10 d=2.50 равен 28.93760 3 итераций с=1.10 d=2.60 равен 33.01928 3 итераций
Интеграл от 1 до 2.718 функции f2 с точностью 1.0E-0003 при: с=3.00 d=0.50 равен 8.40102 2 итераций с=3.00 d=0.40 равен 5.52503 2 итераций с=3.00 d=0.85 равен 17.78460 2 итераций с=3.20 d=0.50 равен 9.35094 2 итераций с=3.20 d=0.40 равен 6.29171 2 итераций с=3.20 d=0.85 равен 19.17026 2 итераций с=3.40 d=0.50 равен 10.29153 2 итераций с=3.40 d=0.40 равен 7.06018 2 итераций с=3.40 d=0.85 равен 20.52016 2 итераций с=3.50 d=0.50 равен 10.75780 2 итераций с=3.50 d=0.40 равен 7.44414 2 итераций с=3.50 d=0.85 равен 21.18214 2 итераций
Заключение.
В данной курсовой работе вычислялись определенные интегралы методом
Гаусса. Как видно из полученных результатов, программа работает верно, т.к.
теоретически [pic]=2, что совпадает с расчетным, обеспечивает заданную
точность вычислений, при малом числе итераций. К достоинствам данного
метода вычисления функций стоит отнести, то что метод Гаусса обеспечивает
точное вычисление интеграла от полинома степени 2m-1. К недостаткам следует
отнести относительно большое время расчета интеграла, при больших m.
Библиографический список.
1. Решение уравнений и численное интегрирование на ЭВМ: Методические указания к курсовой работе по дисциплине «Информатика». Рязань,2000г. 32 c.
2. Бронштейн И.Н., Семендяев К.А. Справочник по математике для инженеров и учащихся втузов. М.:1986 544с.
3. Бахвалов Н.С. Численные методы. М.:1975.
-----------------------
Выход
j
Вывод S, n
Приближенное вычисление второго интеграла S
j=1,3
i=1,4
c[1]:=0.9; c[2]:=1; c[3]:=1.05; c[4]:=1.1; d[1]:=2.4; d[2]:=2.5; d[3]:=2.6; eps:=1e-4; a:=0; b:=3.14159;
c[1]:=0.9; c[2]:=1; c[3]:=1.05; c[4]:=1.1; d[1]:=2.4; d[2]:=2.5; d[3]:=2.6; eps:=1e-4; a:=0; b:=3.14159;
i
Рекомендуем скачать другие рефераты по теме: эффективность диплом, реферат речь.
Категории:
Предыдущая страница реферата | 1 2 3 | Следующая страница реферата