Поиск общей причины неудач ppm первого рода. «Закон сохранения силы»
| Категория реферата: Рефераты по истории техники
| Теги реферата: титульный реферата, налоги в россии
| Добавил(а) на сайт: Fedchenkov.
Предыдущая страница реферата | 1 2 3 4 | Следующая страница реферата
X. Гюйгенс (1629-1695гг.): «И если бы изобретатели новых машин, напрасно пытающиеся построить вечный двигатель, пользовались этой моей гипотезой (о невозможности системы тел изменить положение своего центра тяжести без внешних сил. В. Б.),то они легко бы сами осознали свою ошибку и поняли бы, что такой двигатель нельзя построить механическими средствами».
И. Бернулли (1667-1748 гг.): «Ничтожная часть позитивной причины не может исчезнуть, не производя взамен такого действия, при помощи которого эта потеря может быть восстановлена. Таким образом, ничего из сил не исчезает, хотя бы по видимости такое исчезновение и имело место».
Г. Лейбниц (1646-1716 гг.): «Принцип равенства причины и следствия, т. е. принцип исключенного вечного двигателя - основа моего вычисления живой силы. Согласно этому принципу живая сила сохраняет свою неизменную тождественность.
В течение этих действий (поднятия груза на определенную высоту, сжатия пружины для сообщения определенной скорости) не происходит ни малейшей прибыли, ни малейшей убыли живой силы. Конечно, часть живой силы (этой частью никогда нельзя пренебрегать) поглощается неощутимыми частицами самого тела или других тел.
Мнение, которое я здесь защищаю, не основывается, конечно, на опытах по ударам тел, но на принципах, которые сообщают смысл самым опытам. Эти принципы позволяют высказывать суждения о случаях, еще не проверенных экспериментом. Единственный источник этих принципов есть равенство причины и следствия».
М. В. Ломоносов (1711 -1765 гг.): «Все перемены, в натуре случающиеся, такого суть состояния, что сколько чего у одного тела отнимется, столько присовокупится к другому, так ежели где убудет несколько материи, то умножится в другом месте. Сей всеобщий естественный закон простирается и в самые правила движения, ибо тело, движущее своей силой другое, столько же оной от себя теряет, сколько сообщает другому, которое от него движение получает».
Две последние цитаты показывают, что у Лейбница и особенно у Ломоносова представления о законах сохранения приобретают наиболее обобщенный характер.
Важно еще отметить, что уже у Лейбница принцип сохранения выходит за пределы простого механического движения тел; он говорит и о «поглощении силы неощутимыми частицами тела», т. е. о тепловой форме движения. У Ломоносова эта мысль была развита еще дальше («Рассуждение о природе тепла и холода» - 1744 г.).
Ломоносов был противником господствовавшей в то время теории теплорода - некоей «невесомой материи», добавление которой в тело сообщало ему тепло. Он придерживался мнения, что теплота есть результат движения «нечувствительных частиц» (т. е., говоря современным языком, молекул). Из этого непосредственно следовало, что формулировка о сохранении движения распространяется и на тепловое движение. Закон сохранения энергии не мог утвердиться, пока теория теплорода не была отвергнута; пока он существовал, невозможно было объяснить переход механической работы в тепло; идея этого перехода была ясна и Лейбницу, и Ломоносову.
Интересно, что ломоносовскую кинетическую теорию тепла отвергли именно по этой причине даже в первой половине XIX в.
В солидном немецком физическом словаре Геллера упоминалось о теории тепла Ломоносова, но она критиковалась не за ее действительные недостатки (Ломоносов учитывал только вращательное движение молекул), а за ее главное достоинство - за то, что она опровергала теорию «теплорода».
Работы Лейбница и Ломоносова завершают первый период развития учения о законе сохранения энергии - его идейную подготовку. В течение этого периода сформировалось в основе правильное представление о «сохранении силы» и переходе ее от одного тела к другому и из механической формы в тепловую. Нужно было сделать следующий, решающий шаг: найти количественные связи между формами движения, измерить их и распространить на все известные его формы. Но это требовало не только постановки соответствующих экспериментов и правильного осмысления их результатов, но и в первую очередь ниспровержения теории теплорода, ставшей тормозом дальнейшего движения науки.
Решить эту задачу удалось только в XIX в.; первыми были С. Карно, Р. Майер и Д. Джоуль. Именно их работы определили окончательное установление закона сохранения энергии.
Важную роль сыграло уточнение и разграничение учеными-механиками двух основополагающих понятий - сила и работа.
Термин «работа» впервые был введен французским ученым-механиком Ж. Понселе в 1826 г. («Курс механики в приложении к машинам»), чему предшествовало установление этого понятия (правда, под другими названиями - «сила», «действие», «момент действия», «механический эффект») как меры производительности машин. Им уже широко пользовались во второй половине XVIII в. Например, в курсе механики Котельникова (1774 г.) дано четкое определение величины «действия», впоследствии названного работой: «Действие махины или действующая посредством ея силы равно тягости, умноженной на пройденный ею путь».
Еще более общее представление о работе (когда направление силы не совпадает с направлением движения) содержится в книге французского инженера, ученого и политического деятеля Великой французской революции Лазара Карно. В сочинении «Опыт о машинах вообще» (т. е. в курсе прикладной механики), вышедшем в 1783г., он показал, что значение момента действия (т. е. работы) определяется произведением силы на путь и на косинус угла между ними.
После того как термин «работа» окончательно установился (в XIX в.), исчезла и двойственность понятия «сила». Теперь под силой понималось только воздействие, вызывающее движение тела в определенном направлении.
Так или иначе, в механике «закон сохранения силы» (а затем работы) не подвергался сомнению среди серьезных ученых уже во второй половине XVIII в. Парижская Академия наук в 1775 г. приняла официальное постановление о том, что она «не будет рассматривать никакой машины, дающей вечное движение».
В литературе обычно это решение цитируется очень кратко. Между тем в части, относящейся к ppm2, содержатся интересные мысли .
«...Создание вечного двигателя абсолютно невозможно: даже если трение и сопротивление среды не уменьшают длительности воздействия движущей силы, она не может произвести равного ей эффекта. Причина этого состоит в следующем: если мы хотим, чтобы эффект, производимый силой конечной величины, действовал бесконечное время, необходимо, чтобы произведенный эффект был бесконечно мал.
Предположим, что тело, которому сообщили движение, при отсутствии трения и сопротивления способно сохранить это движение постоянно; но при этом не идет речь о других телах. Это вечное движение возможно было бы только в этих условиях (которые, впрочем, не могут существовать в природе); оно было бы совершенно бесполезно по отношению к другим объектам, предлагаемым обычно творцами вечного движения..» Здесь (правда, применительно только к механическому движению) закон сохранения «силы» и вытекающая из него невозможность вечного двигателя первого рода выражены совершенно четко. И далее:
«...Такой способ исследования, несомненно, дорого обходится; он уже разрушил много семей. Часты случаи, когда механик, который мог бы занять достойное место, растрачивал на это свою славу, время и талант. Таковы принципы, на которых основано решение Академии: постановляя, что она больше не будет заниматься этими вопросами, Академия заявляет о своем мнении о их бесполезности, для сведения тех, кто будет ими заниматься. Часто говорят, что, занимаясь химерическими проблемами, люди открывали полезные истины. Такая точка зрения была бы обоснованна в те времена, когда метод поиска центы был истины во всех областях. В настоящее время, когда он известен, наиболее верный способ поиска истины - искать ее».
Эта часть решения звучит и теперь вполне современно. Здесь указано не только на бесполезность занятий химерическими проектами и пагубность их для самих изобретателей. Обращено внимание на необходимость применять, говоря современным языком, правильную методологию научного поиска. Нынешним ученым изобретателям ppm неплохо было бы вдуматься в умные слова, сказанные французскими академиками более 200 лет назад.
При всей важности и дальновидности решения Парижской Академии в нем не упоминалось о других формах движения и особенно о тепловой; вопрос об их связи с механическим движением оставался открытым. Соответственно оставалась и «щель» для идеологии, разрешающей ppm. Блестящие прозрения Лейбница и Ломоносова имели общий, философский характер. Развитие техники (паровые машины и другие тепловые двигатели, например машина Стирлинга требовало осмысления процессов превращения тепла в работу и работы в тепло, точного их количественного анализа.
Первым правильно поставил (и в основе решил) задачу определения теплового эквивалента работы французский военный инженер Николай Леонар Сади Карно (1796-1832 гг.), сын Л. Карно. Он опубликовал в 1824 г. ставшую впоследствии знаменитой небольшую книжку «Размышления о движущей силе огня и о машинах, способных развивать эту силу». В ней С. Карно заложил основы не только теории тепловых машин, но и второго закона термодинамики. Мы еще вернемся к труду Карно в следующей главе, когда займемся ppm-2. Здесь же нас интересуют взгляды Карно на ppm-1 и его вклад в «закон сохранения силы», из которого вышел закон сохранения энергии - первый закон термодинамики.
Рекомендуем скачать другие рефераты по теме: реферат на тему понятие, диплом 2011.
Категории:
Предыдущая страница реферата | 1 2 3 4 | Следующая страница реферата