Становление радиотехнической теории: от теории к практике. На примере технических следствий из открытия Г. Герца
| Категория реферата: Рефераты по истории техники
| Теги реферата: сочинение ревизор, мтс сообщения
| Добавил(а) на сайт: Nikolenko.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 | Следующая страница реферата
Как занимающийся новыми технологиями предприниматель и рационализатор Маркони достиг той проблемной сферы, где наука не имела готовых ответов. Подобная поставка новой информации из "сферы опыта" оказалась бы значительно более медленной, если ее источником служили ученые, давно занимающиеся этой проблематикой, и, вероятно, было бы меньше неожиданных результатов, если Маркони удовлетворился бы работой с волнами очень короткой длины. Следует отметить, что Лодж в своих экспериментах и демонстрациях между 1894 и 1896 гг. не находил ничего, что его удивляло бы, никаких явлений, которые он как ученый считал бы аномальными или странными. Маркони, напротив, уже с 1895 г. начал уходить от этого упорядоченного и хорошо организованного пастбища в область неизведанного. Рассмотрим, например, что ему потребовалось, чтобы полностью понять полученные им результаты, оперируя со своей новой антенной и когерером. Ему требовалось создать теорию проектирования антенны; не считая фундаментальной теории линейного диполя, здесь ничего не было сделано. Ему была нужна теория распространения радиоволн и в особенности теория, которая позволила бы ему распознавать и использовать различия между характеристиками распространения разных диапазонов частот. Но такой теории не существовало [...] Ему нужна была также такая теория линий передачи, которая помогла бы ему согласовать его передатчик и приемник с антенной. В этой области были выработаны некоторые эмпирические соотношения, но систематически организованного знания не существовало. В каждой из этих областей работа Маркони заключалась в генерации новых данных и проблем" [33].
Точно также экспериментировал в России с беспроводной передачей сигналов Александр Попов: "Летом 1897 г. Попов увеличил возможное расстояние передачи. На средства Морского министерства Попов построил новые приборы и достиг 5-километровой дальности передачи сигнала. Этот первый российский опыт с радио, имевший в первую очередь военное значение, сохранялся в тайне, но открытое при этом свойство отражения радиоволн от предметов (а именно от кораблей) послужило основой для будущего радара. В 1898-1899 гг. Попов руководил экспериментами на Балтийском и Черном морях и разработал способ преобразования принятых радиоволн в звуковые сигналы (ранее модно было их регистрировать лишь на бумаге). В 1900 г. дальность передачи сообщений достигла уже 112 километров" [34] (см. рис. 11) [35].
Чиновники того времени плохо понимали, чем занимается Попов, и весьма незначительно поддерживали его работу. Он умер в 1906 г. после очередной бессмысленной беседы с министром. Важность его исследований стали правильно оценивать лишь спустя некоторое время после его смерти. В 1910 г. для разработки морских радиостанций в Санкт-Петербурге Морское министерство России основало "Радиотелеграфное депо" (позже ставшее радиотелеграфным заводом). Но действительно серьезную государственную поддержку радиотехнические исследования - как теоретические, так и прикладные - получат только в Советское время. Такой же поддержкой будет пользоваться и радиопромышленность.
Маркони, рассчитывая на коммерческий успех, активно пользовался результатами других исследователей и изобретателей, демонстрируя при этом необыкновенную смекалку. Но очень скоро оказалось, "что для достижения большей дальности передачи сигналов требуется непропорциональное увеличение высоты антенны. Так, в 1897 г. Слаби для передачи сигнала на расстояние в 21 км использовал антенный провод длиной 300 м, прикрепленный к воздушному шару. Совершенно очевидно, что по такому пути новое блестящее изобретение Маркони развиваться дальше не могло, требовались новые идеи и лучшее понимание происходящих в нем физических процессов. [...] И то и другое обеспечил Ф. Браун" [36]. Он разработал так называемый сдвоенный передатчик (первичный контур - конденсаторный контур с искровым промежутком, вторичный контур - антенна), в то время как Маркони использовал антенну с включенным в нее искровым промежутком. Какие физические процессы происходили в антенне Маркони, никто себе ясно не представлял. В противоположность Маркони Браун сознательно работал с большими длинами волн.
14 октября 1898 г. Браун запатентовал это изобретение. Его ассистент и ближайший сотрудник Ценнек провел серию опытов на Северном море и доказал явное преимущество передатчика, созданного Брауном. Маркони моментально перенял новое изобретение, что позволило ему реализовать беспроводную телеграфную связь между Европой и Америкой в 1901 г. Интересно, что сам Маркони после первых успешных опытов по передаче сообщений на сравнительно небольшое расстояние не верил в возможность реализации беспроводной телеграфии на большие расстояния (как, например, между Европой и США). Он называл распространяемые тогда в прессе по этому поводу рассуждения как необоснованные фантазии. "...Сам [Маркони] ни в коем случае не соглашается с фантастическими сообщениями прессы, которые видят в его изобретении знаки телеграфии будущего и считают реализацию беспроводной телеграфной связи между Америкой и Европой лишь вопросом времени. Эти сообщения прессы вызвали легко объяснимое беспокойство кабельных компаний. По его же мнению, беспроволочная телеграфия не сможет вытеснить провод и кабель, если речь идет о тысячах километров" [37]. Другой немецкий ученый Адольф Слаби, принимавший участие в опытах Маркони в мае 1897 г., после этого сам провел эксперименты по беспроволочной телеграфии.
А. Слаби улучшил аппаратуру: он использовал в качестве передатчика искровой индуктор (катушку Румкорфа), так чтобы его искровой промежуток располагался в антенном контуре, индуктивно с ним связанном. Когерер же и соответствие антенного провода различным частотам были также последовательно улучшены (рис. 12) [38].
Спор за приоритет между Поповым и Маркони демонстрирует нам различия в "философии техники" сообществ ученых и инженеров. В то же время становится ясным, что для внедрения новой техники в жизнь важную роль играют не только открытие, изобретение и их патентирование, но и их приспособление к промышленному производству этой новой техники, а также распространение вновь созданного продукта (нововведения) на рынке. Такую способность соединить воедино все эти области лучше всего продемонстрировал Фердинанд Браун, "блестящий физик-теоретик и практик", он развивал беспроволочную телеграфию "одновременно со своими контактами в области промышленности". Он не только вовремя и грамотно патентовал и защищал свои изобретения, но также создал фирму для продвижения своих изобретений и патентов на рынок. Он доказал, например, что его патенты на замкнутый колебательный контур и рамочную антенну, без которых вряд ли возможно было бы перейти к передаче сигналов на большое расстояние, появились существенно раньше патентов Маркони.
В Германии продолжалась борьба за приоритет между Брауном и Слаби, но они смогли ее прекратить. Слаби и его бывший ассистент Граф Арко работали на фирму "АЭГ", а Браун - на фирму "Сименс". Браун разработал и усовершенствовал также целый ряд измерительных инструментов. Коммерческое распространение всех этих приборов Брауна на рынке взяла на себя фирма "Хартманн и Браун", руководителем которой был брат Ф. Брауна. В связи с ростом значения радиотелеграфии, чтобы создать противовес деятельности фирмы Маркони, в 1903 г. с помощью "АЭГ", а также "Сименс и Гальске", которые до того находились в конкуренции друг другу, было основано "Общество беспроволочной телеграфии" (Телефункен) [39]. "Для телеграфии в водной среде он работал совместно с инвестором Стольверком. Это сотрудничество привело его в июле 1900 г. к созданию нового "Общества Браун-Сименс-Гальске", которое позже слилось с другими предприятиями и до сих пор производит свою продукцию под именем "Телефункен". Впрочем, с технической точки зрения новая фирма "Телефункен" еще долгое время уступала британскому "Обществу Маркони". Ей, правда, удалось благодаря демпинговым ценам получить у российского правительства заказ на оснащение Российского военно-морского флота системами Арко-Слаби. Но во время морской битвы при Цусиме (против японского морского флота) она отказала в работе, а несколько станций Маркони надежно работали" [40].
Развитие электродинамики проходило далее в двух основных направлениях: 1) дальнейшее обобщение и систематизация физической теории; 2) совершенствования структурных схем эксперимента, стимулировавшего появление беспроволочной телеграфии (радиотехники). Второе направление носило в основном инженерный характер.
Возникновение радиотехники
Институализация инженерной деятельности в области радиотехники осуществлялась лишь после изобретения радио, когда начала формироваться новая отрасль промышленности. Эта деятельность была направлена на разработку конструктивных вариантов радиотехнических устройств. Она дала толчок к появлению радиотехнической теории, обозначившему начало собственной истории радиотехники. С этого времени она становится связанной в основном с развитием новых схем радиотехнических устройств (например, схема с заземленной сеткой, рефлексная система, супергетеродинный приемник и т. д.). Фердинанд Браун положил начало деятельности именно такого рода. "Передатчик для беспроволочной телеграфии должен был удовлетворять двоякому требованию: прежде всего, в нем должен был возникать по возможности сильный высокочастотный переменный электрический ток, чтобы затем то же самое произошло и с излучением, т.е. электромагнитными волнами. Передатчик Маркони, который в противоположность конденсаторному контуру представляет собой не "закрытый", а "открытый" колебательный контур, превосходно излучает (радиоволны. - В. Г.). Конденсаторный контур, который сам практически ничего не излучает, напротив, с точки зрения создания сильных токов высокой частоты намного превосходит открытый колебательный контур. На основе объединения обеих схем и возник знаменитый передатчик Брауна. [...] Аналогичная двойственная задача возникает и перед приемником. Прежде всего пришедшие от передатчика электрические волны должны быть приняты, причем они должны быть преобразованы в высокочастотные токи, которые затем со своей стороны вызывают воспроизведение знаков в телефоне или записывающем устройстве. И здесь тоже для приема волн нужен подвешенный провод, как это превосходно и аналогичным образом сделали Попов и Маркони. Однако он в меньшей степени подходит для целевого использования полученной энергии, для чего, как распознал Браун, лучше всего подходит конденсаторный контур. Именно таким образом с помощью соединения этого провода с одним или многими конденсаторными контурами и возник связанный приемник Брауна" [41] (см. рис. 13) [42].
Ф. Браун был первым, кто действительно понял, какие электрические процессы происходят в радиопередатчике и радиоприемнике. Исходя из теоретических рассуждений, Браун пришел к выводу, что нужно индуктивно соединить искровой промежуток в передающем устройстве, а также когерер с антенной. Это сделало его передатчик гораздо более действенным и тем самым позволило осуществить радиосвязь через Атлантику. Изобретенный Брауном кристаллический детектор скоро заменил предложенный Бранли когерер. "Вся техника передачи с того времени, как Браун ввел в практику замкнутый контур, претерпела множество изменений. Передатчик с взрывным искровым разрядом был заменен передатчиком Вина после основополагающего открытия искры замыкания. [...] Использование электронных ламп привело к полному видоизменению и появлению совершенно новых возможностей, которые в первые годы становления этой области вообще трудно было себе даже представить" [43].
В первые же годы после изобретения радио начинается бурное развитие радиотехники. Инженерная деятельность становится главным стимулом теоретических изысканий. Основное внимание многочисленных изобретателей концентрируется на совершенствовании конструктивных элементов (детекторов [44], трансформаторов и машин высокой частоты, катодных ламп, прерывателей, рамочной антенны и т. д.) и схем (дуговых генераторов, передатчиков с ударным возбуждением, замкнутого колебательного контура и т.п.) радиотехнических устройств. Применение замкнутого колебательного контура имело особое значение. "Для принятия электрических волн следовало использовать закрытые колебательные контуры в противоположность до сих пор используемых открытых контуров. В опытах 1913 г. в Страсбурге появляется рамочная антенна, наиболее распространенная сегодня. Прием на рамочную антенну в отличие от приема с помощью открытого колебательного контура имеет существенные преимущества. В этом случае можно освободиться от помех, которые появляются вполне с определенных направлений, и тем самым получить большую свободу от помех. Кроме того, появляется возможность радиопеленга и т.п. Эти преимущества, которые сегодня всем известны, были впервые выявлены Брауном" [45]. Изобретение Брауном рамочной антенны было очень важным для дальнейшего развития телеграфии без проводов. "В 1890 г. впервые примененная рамочная антенна сделала возможным направленное излучение и направленный прием. При этом были подавлены атмосферные помехи и нежелательный прием других станций. Маркони перенес эту новую схему Брауна в свои приборы. В 1901 г. он осуществил радиосвязь между Европой и Америкой, в результате чего беспроволочная телеграфия смогла завоевать мир" [46].
Радиотехнические устройства усовершенствовались благодаря увеличению их мощности, дальности действия, удобства эксплуатации, экономичности, а также освоения все новых диапазонов электромагнитных волн для осуществления радиопередачи и радиоприема и достижения их все более наглядного представления. Последнее осуществлялось, например, с помощью электронно-лучевой трубки, или трубки Брауна.
"В силу ее практически безынерционного функционирования она давала возможность исследовать временные характеристики переменных токов и напряжений весьма высокой частоты. Эта особенность трубки, ее особое место среди иных осциллографических устройств, подчеркивалась Брауном буквально в самых первых публикациях. Для отображения быстрых колебаний, которые использует радиотехника, трубка Брауна является единственным средством детального исследования временных характеристик" [47]. Это был, однако, только лишь прототип современного осциллографа, который стал сегодня "одним из основных измерительных приборов в электронике (см. рис. 14 а), который позволяет сделать видимым на экране в графической форме изменяющееся во времени напряжение (прохождение и форму сигнала), а также измерить или представить его амплитуду в зависимости от времени" [48] (см. рис. 14 б) [49].
Браун хотел "с помощью своей электронно-лучевой трубки сделать видимым переменный ток, которым снабжался город Страсбург. Он заказал ее у наследника фирмы "Франц Мюллер Гайслер". [...] На связанном с его электронно-лучевой трубкой поворотным зеркалом появилась синусоидальная кривая. Переменный электрический ток вновь созданной электростанции города Страсбурга стал виден на экране электронно-лучевой трубки. [...] В последующие годы Браун и Ценнек добавили к этому дополнительные устройства, обеспечившие прежде всего горизонтальную развертку и некоторые иные улучшения. [...] Роговский в Аахене доработал это устройство, введя в него в 1905 г. нагреваемый катод и электростатическую развертку" [50]. Изображение кривой тока было видно непосредственно на флуоресцирующем экране. Луч следовал непосредственно за изменениями электрического тока, и Браун смог сфотографировать картину колебаний и опубликовать ее. Было очень важно уметь представлять переменные токи, измерять их и геометрически конструировать [51].
Каждому такому изобретению сопутствовали определенные теоретические и экспериментальные исследования. Например, для создания катодного вентиля (двухэлектродной лампы) был использован эффект Эдисона (электронная эмиссия), установившего в 1883 г. во время опытов со своей лампой накаливания, что "если вблизи нити накаливания расположить металлический стерженек и соединить его с положительным полюсом батареи, то через него потечет электрический ток" [52]. Однако для достижения технического применения этого эффекта понадобилось провести целый ряд дополнительных исследований.
Американский физик Ли де Форест установил, что раскаленное тело может вести себя как излучатель. Он начал разогревать не два, а один электрод и против него расположил холодный анод в виде пластинки. Ли де Форест "вполне сознательно начал поиск замены для "когерера" в качестве радиоприемника. [...] Он получил патент 15 января 1907 г. [...] и сначала продемонстрировал трехэлектродную лампу с управляющим электродом, как раннюю форму триода" (см. рис. 15) [53]. "Но этот управляющий электрод не был расположен еще между катодом и анодом [...] Только несколько позже [...] [он] начал вводить управляющий электрод между катодом и анодом, а именно - чтобы не разорвать электронный поток - в форме сетки" [54].
(на рисунке - явная путаница! - V.V.)
Английский инженер сэр Джон Флеминг изобрел вакуумный диод, названный им "пустотным клапаном", и предложил использовать его в качестве детектора в радиоприемном устройстве (см. рис. 16) [55]. Он использовал открытый Эдисоном эффект "для создания двухэлектродной выпрямительной электронной лампы" и в 1905 г. получил на нее британский и американский патенты. Однако "права на его изобретения находились в собственности фирмы Маркони, консультантом которой он был". Тем не менее диод Флеминга "так никогда и не сыграл какой-либо значащей практической роли, поскольку он явно проигрывал в качестве выпрямляющего элемента кристаллическому детектору Брауна" [56].
Рекомендуем скачать другие рефераты по теме: заболевания реферат, конспект урока по математике.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 | Следующая страница реферата