Искусственный интеллект
| Категория реферата: Рефераты по кибернетике
| Теги реферата: сочинение почему, шпаргалки по математике
| Добавил(а) на сайт: Butusov.
Предыдущая страница реферата | 1 2 3 4 5 6 7 | Следующая страница реферата
Искусственный интеллект – новая информационная революция
Только создав Разум творец смог почувствовать себя Творцом
В.В. Головачев
Наш мир устроен гораздо сложнее чем мы можем себе представить. Но несмотря на это, даже тот поток информации который человек может воспринять и обработать за определённую единицу времени, неимоверно велик. Чего только стоит одна графика? Что говорить про отдельные случаи, когда этот поток увеличивается (гипноз, медитирование, магическое воздействие на окружающий мир).
Но это в идеале. Слепой человек лишен графического потока, парализованный — лишен осязательной информации, и т.д. То есть в принципе интеллект может функционировать в замкнутом пространстве, не реагируя на внешние факторы. И для этого уже не требуется та вычислительная мощность, в которой нуждается здоровый человек. Для создания ИИ уже достаточно вычислительной мощности современных компьютеров. Но необходима особая структура оперативной памяти, отличная от ёмкостной. Оперативная память должна быть токовой.
Что собой представляет, привычная для пользователя компьютера, оперативная память? Это микросхемы, чипы, построенные из ёмкостных ячеек.
Каждая ячейка имеет свой адрес (координаты). Заполненная ячейка –
заряженная ёмкость (1), пустая – разряженная (0). На обработку каждой
ячейки, запись, стирание, считывание процессор выделяет отдельные циклы. То
есть так он (компьютер) и работает: считывает, считает, записывает
результат.
А так же ли работает мысль (человеческая оперативная память)? А ведь
не так! Мы не выделяем для её обслуживания циклов. Появление, изменение и
уничтожение информации в ней конечно связано со временем. Но вычислительная
мощность процессора, то есть работа мозга, направленная на обработку
внешних воздействий, и поиск информации в статичной (сохранённой) памяти
при этом проблем с ресурсами не имеют. Единицы в нашей оперативной памяти
не подвергаются вычислительному процессу. Они видоизменяются под
воздействием внешних факторов напрямую, «проехала красная машина»,
«заболела спина», «надо ответить на письмо от друга». В машинном коде эти
мысли занимают разное битное пространство памяти. В человеческом – один
блок. В таком же блочном виде они сохраняются в статичной памяти. Разный
уровень интеллектуальных способностей у людей, видимо, связан с размерами
этого блока. Больше блок – легче осмысление крупного массива информации, быстрее поиск в сохранённой памяти. [1]
Все уже, наверное, слышали об электромеханических собаках в Японии, способных узнавать хозяина в лицо, выполнять некоторые простейшие команды и имеющие некоторую способность к обучению. Слышали и про холодильники с выходом в Интернет и про внедрение Microsoft в будущие версии Windows элементов искусственного интеллекта.
В подобном развитии области искусственного интеллекта нет ничего необычного. Здесь уместно привести гипотезу о встречной эволюции человека и компьютера: человек сначала учиться видеть, ходить, разговаривать, а уже потом развивает способности к вычислениям и логическим выводам. Компьютер же наоборот, рождается как вычислительная система, базирующаяся на формальной логике, в процессе развития приобретает способности к распознаванию образов, синтезу речи и управлению в реальном времени. [2]
В настоящее время различают два основных подхода к моделированию искусственного интеллекта (AI – artificial intelligence): машинный интеллект, заключающийся в строгом задании результата функционирования, и искусственный разум, направленный на моделирование внутренней структуры системы. [3] Разделение работ по искусственному интеллекту на два направления связано с существованием двух точек зрения на вопрос, каким образом строить системы искусственного интеллекта. Сторонники одной точки зрения убеждены, что «важнее всего результат», т.е. хорошее совпадение поведения искусственно созданных и естественных интеллектуальных систем, а что касается внутренних механизмов формирования поведения, то разработчик искусственного интеллекта вовсе не должен копировать или даже учитывать особенности естественных, живых аналогов. Другая точка зрения состоит в том, что именно изучение механизмов естественного мышления и анализ данных о способах формирования разумного поведения человека могут создать основу для построения систем искусственного интеллекта, причем построение это должно осуществляться прежде всего как моделирование, воспроизведение техническими средствами принципов и конкретных особенностей функционирования биологических объектов. [4]
Первое направление, таким образом, рассматривает продукт интеллектуальной деятельности человека, изучает его структуру, и стремится воспроизвести этот продукт средствами современной техники. Моделирование систем машинного интеллекта достигается за счет использования законов формальной логики, теории множеств, графов, семантических сетей и других достижений науки в области дискретных вычислений. [5] Основные результаты заключаются в создании экспертных систем, систем разбора естественного языка и простейших систем управления вида «стимул-реакция». Ясно, что успехи этого направления искусственного интеллекта оказываются тесно связанны с развитием возможностей ЭВМ и искусства программирования, то есть с тем комплексом научно-технических исследований, которые часто называют компьютерными науками.
Второе направление искусственного интеллекта рассматривает данные о нейрофизиологических и психологических механизмах интеллектуальной деятельности и, в более широком плане, разумного поведения человека. Оно стремиться воспроизвести эти механизмы с помощью тех или иных технических устройств, с тем чтобы «поведение» таких устройств хорошо совпадало с поведением человека в определенных, заранее задаваемых пределах. Развитие этого направления тесно связано с успехами наук о человеке. Для него характерно стремление к воспроизведению более широкого, чем в машинном интеллекте, спектра проявлений разумной деятельности человека. Системы искусственного разума базируются на математической интерпретации деятельности нервной системы во главе с мозгом человека и реализуются в виде нейроподобных сетей на базе нейроподобного элемента (рис. 2) – аналога нейрона (рис. 1). [3]
Нейроподобные сети в последнее время являются одним из самых перспективных направлений в области искусственного интеллекта и постепенно входят в бытность людей в широком спектре деятельности.
Сети первой группы, такие как сети обратного распространения ошибки, сети Хопфилда и др. используются для распознавания образов, анализа и синтеза речи, перевода с одного языка на другой и прогнозирования. Это вызвано такими особенностями сетей как восстановление изображения по его части, устойчивостью к зашумлению входного сигнала, прогнозирование изменения входов и параллельность вычислений. Также, немаловажной характеристикой является способность функционировать даже при потере некоторой части сети.
Сети второй группы используются как системы управления в реальном
времени несложных объектов. Это управление популярными в последнее время
интеллектуальными агентами, выполняющими роль виртуальных секретарей.
Особенностями данной группы является появление некоторых внутренних
стимулов, возможностью к самообучению и функционированию в реальном
времени.
И, наконец, сети третьей группы, являющиеся дальнейшим развитием предыдущих, представляют собой уже нейроподобные системы и нацелены они на создание экзотических в настоящее время виртуальных личностей, информационных копий человека, средой обитания которых является глобальная сеть Интернет. Данное направление только зарождается, но есть немалый шанс, что мы станем свидетелями ситуации рождения виртуальных людей, подробно описанной фантастами и режиссерами. [6]
Сейчас в Интернете повсеместно можно встретить признаки зарождения подобных проектов, призывы объединиться всем научным потенциалом способного думать человечества в целях очеловечивания Интернета, преобразования его в разумную систему или среду обитания разумных систем. Раз существуют подобные предпосылки, значит не что не оставит полет человеческой мысли на пути достижения поставленной цели.
На основании вышеизложенного можно сделать вывод о том, что основные направления искусственного интеллекта связаны с моделированием, но в случае машинного интеллекта мы имеем дело с моделированием феноменологическим, имитационным, а в случае искусственного разума – с моделированием структурным.
Основы теории нейроподобных сетей.
Некоторые сведения о мозге
Что позволяет человеку анализировать поступающую информацию? В терминологии нейрогенетики введено ключевое понятие – нейросеть. Именно совокупность нейросетей образует отделы нервной системы человека, которые в свою очередь определяют всю деятельность, придают существу разум, интеллект.
Мозг является, пожалуй, самой сложной из известных нам систем переработки информации. Достаточно сказать, что в нем содержится около 100 миллиардов нейронов, каждый из которых имеет в среднем 10 000 связей. При этом мозг чрезвычайно надежен: ежедневно погибает большое количество нейронов, а мозг продолжает функционировать. Обработка огромных объемов информации осуществляется мозгом очень быстро, за доли секунды, несмотря на то, что нейрон является медленнодействующим элементом со временем реакции не менее нескольких миллисекунд.
Пока не слишком понятно, как мозгу удается получить столь впечатляющее сочетание надежности и быстродействия. Довольно хорошо изучена структура и функции отдельных нейронов, имеются данные об организации внутренних и внешних связей между нейронами некоторых структурных образований мозга, совсем мало известно об участии различных структур в процессах переработки информации. [7]
Ниже приводятся некоторые сведения об устройстве и работе нервной системы, которые используются при построении моделей нейронных сетей.
Нейрон как элементарное звено.
Рекомендуем скачать другие рефераты по теме: оформление доклада титульный лист, изложение материала.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6 7 | Следующая страница реферата