Теория электрических цепей
| Категория реферата: Рефераты по коммуникации и связи
| Теги реферата: электронный реферат, виды понятий реферат
| Добавил(а) на сайт: Дудаков.
Предыдущая страница реферата | 1 2 3 4 5 6 | Следующая страница реферата
поиска, обнаружения и устранения НРВ, а также указания метода (алгоритма)
программа запускается на расчет и начинается процесс моделирования путем
численного интегрирования дифференциальных уравнений математической модели
схемы (ММС).
Результаты решения уравнений ММС получаются в виде интегральных кривых
напряжений (временных диаграмм изменений напряжений), представляющих
картину переходных процессов в анализируемой схеме.
6. Задания к курсовой работе
Для выбранного варианта электрической схемы (цепи):
1. построить эквивалентную схему (ЭС), при этом нелинейные элементы
(диоды, транзисторы) заменить их моделями (рис.2);
2. построить граф ЭС и М-матрицу контуров и сечений;
3. составить топологические уравнения по законам Кирхгофа и систему обыкновенных дифференциальных уравнений в нормальной форме Коши;
4. составить описание топологии ЭС, параметров компонентов и режимных параметров для расчета схемы на ЭВМ;
5. выполнить расчет токов ветвей заданного варианта схемы в статическом режиме;
6. выполнить расчет переходных процессов и построить временную диаграмму работы схемы с помощью программы анализа;
7. сделать выводы по полученным результатам расчета и описать работу схемы.
Вариант 1
TSAD = 30
TIMP = 40
KFRONTF = 1.0
KBACKF = 1.0
LEVEL0 = 0.7
LEVEL1 = 1.7
где TSAD – время задержки начало импульса:
TIMP – длительность импульса; LEVEL0 и LEVEL1 – напряжения, соответствующие
логическому 0 и логической 1; KFRONTF и KBACKF – коэффициенты, определяющие
длительности(тангенс угла наклона ) переднего и заднего фронтов входного
импульса.
Режимные параметры имеют следующие значения:
M1 = 0.01
M2 = 0.001
TK = 100
HP = 2
где M1 и M2 – коэффициенты для автоматического определения шага
интегрирования; ТК – конечный отрезок интегрирования, устанавливаемый в
соответствии с реальной длительностью переходных процессов, протекающих в
схеме; НР – шаг вывода на печать результатов расчета переходных процессов.
В программе предусмотрен вывод графиков изменения напряжений и токов
ребер и хорд, в том числе напряжений на входах и выходах. В данном примере
в качестве значений параметра вывода выходных сигналов SHOWUR перечислены
число и номера ребер, напряжения на которых выводятся на печать, т.е.
SHOWUR = 4 3 4 19 20. так как напряжения на хордах не выводятся на печать, параметр SHOWUH=0.
Значения параметров GRAPH=1 PEREDAT=1 позволяют осуществить графический
вывод и построить передаточную характеристику.
Поскольку схема ЭСЛ управляется сигналами отрицательной полярности
параметр IC=1.
Описание топологии схемы вводится (считывается), а затем после
синтаксического контроля проверки на отсутствие неправильно размещенных
ветвей (НРВ) и автоматической коррекции структуры схемы:
Алгоритм решения системы (1) включает на очередном шаге интегрирования
следующие основные процедуры:
вычисление вектора –функции F(V k-1, t k-1); определение величины шага
hk; вычисление Vk согласно методу Эйлера по формуле Vk = Vk-1 + hk *F(Vk-
1 ,tk-1 ) и определение нового значения времени интегрирования tk =
tk-1 +hk .
Вторая форма представления ММ электрической цепи связана с использованием
метода узловых потенциалов, неявных формул численного интегрирования, алгебраизацией системы ОДУ и решением ее методом Ньютона.
Нормальная форма Коши системы ОДУ удобна для применения явных методов
численного интегрирования. Для ее решения также могут быть использованы и
неявные методы численного интегрирования. В этом отношении метод переменных
состояния, который позволяет получить ММ электрической цепи в форме (1), является более универсальным и перспективным для использования в программах с открытыми библиотеками численных методов решения уравнений и с открытыми
библиотеками моделей элементов (так как в методе переменных состояния не
требуется предварительная алгебраизация компонентных уравнений и, следовательно, методы формирования и решения уравнений могут
рассматриваться независимо друг от друга).
Далее рассмотрим вопросы описания цепей и формирование уравнений
переходных процессов в электрических цепях методом переменных состояния.
Уравнения переходных процессов- математические модели электрических
цепей включают в себя уравнения компонентные и топологические.
Компонентные уравнения описывают электрические свойства компонентов (
элементов) цепи. Для линейных двухполюсников (резистора, конденсатора и
катушки индуктивности) эти уравнения имеют следующий вид:
Ur = Ir * R , Ic =C * DUc/ dt и Ul = L * DIl /dt, где R,C и L- сопротивление, емкость и индуктивность; U и I -напряжение и ток в компоненте, причем индекс характеризует принадлежность переменной компоненту определенного типа.
Сложные компоненты (например, диоды, транзисторы и т.д.) имеют модели
из нескольких уравнений. Обычно эти уравнения составляются на основании
эквивалентных схем замещения сложных компонентов, состоящих из двухполюсных
элементов линейных и нелинейных. Нелинейные безынерционные двухполюсники в
эквивалентных схемах чаще всего описываются зависимыми источниками тока I =
F1 (U) или напряжения U =F2 (I) . Инерционные нелинейные двухполюсники
описываются зависимыми емкостями, индуктивностями или источниками.
Уравнения этих элементов связывают не только токи и напряжения, но и
производные по времени некоторых из этих величин. Получение компонентных
уравнений или соответствующих им эквивалентных схем - самостоятельная
задача моделирования элементов электрических цепей [6;7].
Топологические уравнения отражают связи между компонентами
(элементами) электрической цепи и составляются на основании законов
Кирхгофа. В методах получения уравнений важное значение имеет так
называемая М-матрица – матрица контуров и сечений. Эта матрица содержит в
себе полную информацию о структуре эквивалентной схемы (ЭС) рассматриваемой
электрической цепи. Строки М-матрицы в закодированном виде отображают
уравнения закона напряжений Кирхгофа для выбранных контуров схемы, а
столбцы М-матрицы – уравнения закона токов Кирхгофа для сечения схемы.
Целью построения М-матрицы является упрощение процедуры формирования
математической модели ЭС электрической цепи.
При построении М-матрицы используют некоторые понятия теории графов.
Граф также как и эквивалентная схема электрической цепи содержит ветви и
узлы (называемые вершинами). Ветви графа, соответствующие двухполюсным
ветвям эквивалентной схемы представляют собой линии произвольной длины и
формы. Вершины графа соответствуют узлам эквивалентной схемы.
Важным понятием теории графа является дерево графа, под которым
понимают совокупность ?-1 ветвей, соединяющих все узлы, не образующих ни
одного контура. Ветви дерева называют ребрами, а ветви графа, не вошедшие
в дерево - хордами, связями. В любом графе можно выделить более чем одного
дерево. Процесс построение М - матрицы, следовательно, получение ММ в
методе переменных состояния начинается с построения нормального дерева, в
которое в ветви графа включаются со следующим приоритетом: сначала ветви
источников ЭДС Е, затем ветви С и далее ветви R и L. Ветви источников токов
J не включаются в нормальное дерево. Построение нормального дерева графа
приводит к разбиению множества ветвей схемы В на подмножества ребер Р и
хорд Х. При этом определяются контуры и сечения эквивалентной схемы, для
которых составляются уравнения по законам
TR=
T1 0 3 6 7
T2 0 4 6 7
T3 0 5 6 8
T4 0 10 5 0
T5 0 8 9 0
T6 0 7 11 0
D1 0 12 13 12
D2 0 13 1 13
В массиве U= указаны начальные и конечные узлы, между которыми включены
двухполюсные ветви схемы: источники напряжения, емкости и резисторы. В
массиве TR= перечислены узлы подключения транзисторов в следующей
последовательности: база, эмиттер и коллектор. Диод представлен как
транзистор, у которого коллектор и база закорочены. В первом столбце
массива TR= указаны нули (“0”), которые указывают на то, что в схеме ЭСЛ
используются транзисторы n-p-n-типа.
Предполагается, что все транзисторы проводимости n-p-n-типа имеют
одинаковую физическую структуру и при моделировании для них используются
модифицированные модели Эберса-Молла.
Для параметров входного импульса напряжения с начальным значением Е4=-
1.7В указаны следующие числовые значения:
Рекомендуем скачать другие рефераты по теме: реферат традиции, реферат газ.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6 | Следующая страница реферата