Алгебра логики
| Категория реферата: Рефераты по математике
| Теги реферата: понятие культуры, отчет о прохождении практики
| Добавил(а) на сайт: Radana.
Предыдущая страница реферата | 1 2 3 4 5 6 | Следующая страница реферата
ЛОЖЬ
ЛОЖЬ
Логические значения ИСТИНА и ЛОЖЬ называют также булевыми значениями – в честь английского математика Джорджа Буля, который в XIX в. заложил основы современной математической логики. Функции с булевыми аргументами называют булевыми функциями. Всего булевых функций от 2 переменных – 16. Для всех булевых функций от двух переменных имеются соответствующие конструкции на русском языке. В информатике в основном используются следующие булевы функции: - логическое ИЛИ (дизъюнкция) - логическое И (конъюнкция) - логическое отрицание («НЕ», обозначается ~ и противоположно своему аргументу) - исключающее ИЛИ Из этих основных складываются комбинированные функции: ИЛИ-НЕ, И-НЕ. Именно они получили наибольшее распространение в логической электронике, в компьютерах. Преобразование выражений, состоящих из булевых функций.В математической логике преобразование выше указанных выражений проводится для различных целей – от упрощения исходного до доказательства утверждений. В информатике же оно используется в основном для упрощения, ведь при производстве цифровой электроники, как и любого другого товара, требуются наименьшие затраты. Для упрощения булевых выражений используются те же методы, что и при упрощении алгебраических. Для начала была проведена аналогия между алгебраическими операторами от двух аргументов (сложение, вычитание, умножение и т.д.) и булевыми. Было выяснено, что умножение и логическое «И» обладают сходными свойствами: - от перестановки мест аргументов результат не изменяется A & B = B & A - существует следующий закон A & (B & C) = (A & B) & C Также существуют некоторые тождества, опирающиеся на особые свойства функции, например: 1) A & (~A) = ЛОЖЬ 2) (~A) & (~B) = ~ (A v B) Аналогично, сложение и логическое «ИЛИ»: - от перестановки мест аргументов результат не изменяется A v B = B v A - существует следующий закон (A v B) v С = A v (B v C) - можно выносить общий множитель за скобки (A & B) v (С & B) = B & (A v C) И также некоторые собственные законы: 1) A v (~A) = ИСТИНА Рекомендуем скачать другие рефераты по теме: конспекты по литературе, шпаргалки бесплатно. Категории:Предыдущая страница реферата | 1 2 3 4 5 6 | Следующая страница реферата Поделитесь этой записью или добавьте в закладки |