Алгебраические числа
| Категория реферата: Рефераты по математике
| Теги реферата: шпаргалки по физике, бесплатные дипломы скачать
| Добавил(а) на сайт: Starodubcev.
Предыдущая страница реферата | 1 2 3 4 5 6 | Следующая страница реферата
Обозначим минимальный многочлен для z через f(x). Согласно теоремы 1: F(x)=f(x)g(x); где g(x) – многочлен с рациональными коэффициентами. Поскольку F(x) неприводим над полем рациональных чисел и f(x) отлично от постоянного, то g(x)=c, где c – рационально. F(x)=cf(x), т.е. z – алгебраическое число n-й степени. Теорема доказана.
Пример:
Пусть p – простое число.
1), не равном p-ой степени другого целого, представляет собой алгебраическое число степени p. Действительно это число есть корень неприводимого над полем рациональных чисел многочлена.
xp-a=0
Если z – алгебраическое число степени n и f(x) – минимальный многочлен для z, то все корни z1, z2, … zn уравнения f(x)=0, отличные от z, называют сопряженным с z.
Один из корней совпадает с z, будем ставить его на первое место, т.е. z=z1.
2.3. Поле алгебраических чисел
Теорема 4: Множество всех действительных алгебраических чисел представляет собой поле, т.е. сумма, разность, произведение и частное двух алгебраических чисел a и b (для частного при b¹0) являются алгебраическими числами.
Доказательство:
Пусть a - корень многочлена f(x) степени n с целыми коэффициентами, корни которого a1, a2, … ,an, a и b - корень многочлена j(x) степени m с целыми коэффициентами, корни которого b1, b2, … bm (b=b1). Рассмотрим многочлен:
F(x)=(x-(ai+bi))=
= (x-a1-b1) (x-a1-b2) … (x-a1-bm)
(x-a2-b1) (x-a2-b2) … (x-a2-bm)
- - - - - - - - - - - - - - - - - - - - - - - - - -
(x-an-b1) (x-an-b2) … (x-an-bm) (2)
Если в этом произведении сделать какую угодно подстановку величин a1, a2, … ,an, то некоторые строки переставляется местами, но произведение в целом не изменится. Это значит, что F(x) – симметрический многочлен по отношению b1, b2, … bm. В целом F(x) – симметрический многочлен от двух систем аргументов: a1, a2, … ,an и b1, b2, … bm.
Согласно известным теоремам о симметрических многочленах, коэффициенты многочлена F(x) могут быть выражены рационально через элементарные симметрические функции от a1, a2, … ,an и b1, b2, … bm, т.е. через целые коэффициенты, f(x) и j(x). Это значит, что коэффициенты F(x) рациональны, и, следовательно, число a+b=a1+b1, являющегося, как это непосредственно видно из формулы (2), корнем F(x), есть алгебраическое число.
Для доказательства того, что произведение двух алгебраических чисел a и b есть алгебраическое число, достаточно, аналогично тому, как это было только что сделано для многочлена (2), рассмотреть многочлен:
F(x)=(x-aibi) (3)
Этот многочлен имеет в качестве одного из своих корней a1b1=ab.
Пусть b - корень многочлена j(x)=b0xn+ b1xn-1+ … bn, (bi – целые числа). Тогда -b является корнем многочлена с целыми коэффициентами.
j(-x)=(-1)nb0xn+(-1)n-1b1xn-1+ … bn, а при b¹0 корень многочлена xnj()=b0+b1x+ … bnxn. Таким образом, вместе с b алгебраическими числами являются -b и .
Разность может быть представлена в виде a+(-b), т.е. в виде суммы двух алгебраических чисел. При b¹0 частное , являясь произведением двух алгебраических чисел, представляет собой так же алгебраическое число.
Если степени алгебраических чисел a и b равны m и n, то, взяв в качестве f(x) и j(x) соответствующие минимальные многочлены будем в (2) и (3) иметь многочлены степени mn, и ab алгебраические числа степени, не большей, чем mn. Многочлены j(x), j(-x), и xn одинаковой степени, а, следовательно, b, -b, - алгебраические числа одной и той же степени, откуда следует, что и a-b и имеют степени не больше, чем mn. Теорема доказана.
Пример:
Рекомендуем скачать другие рефераты по теме: конспект урока 9 класс, сочинение 6 класс.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6 | Следующая страница реферата