Асимптота
| Категория реферата: Рефераты по математике
| Теги реферата: образец курсовой работы, понятие культуры
| Добавил(а) на сайт: Ведерников.
Предыдущая страница реферата | 1 2 3 4 | Следующая страница реферата
[pic]
то есть мы, как и следовало ожидать, получили тоже уравнение асимптоты
y = x – 4, как при х ( ( (, так и при х ( - (.
В виде y = kx + l может быть записано уравнение любой прямой, непараллельной оси Oy. Естественно распространить определение асимптоты и
на прямые, параллельные оси Oy.
8
3. Виды
3.1 Горизонтальная асимптота
Пусть ( lim f (x) = b. Тогда говорят, что у функции f (x) имеется
горизонтальная асимптота y = b. График функции чаще всего имеет такой вид
(при x ( +() (рис.2)
(рис.2)
хотя в принципе, может иметь и такой вид (рис.3)
(рис.3)
9
3.2 Вертикальная асимптота
(рис.4)
Пусть при x ( a ( 0 lim f (x) = ( (. Тогда говорят, что прямая x = a
является х ( (
вертикальной асимптотой f (x). График функции f (x) при приближении x к а
ведёт примерно так (рис.4), хотя, конечно, могут быть разные варианты, связанные с тем, куда уходит f (x) в + ( или ( (.
Чаще всего вертикальная асимптота появляется тогда, когда f (x) имеет вид
[pic].
Тогда вертикальные асимптоты находятся как корни уравнения
[pic]
10
3.3 Наклонная асимптота
(рис.5)
Пусть уравнение асимптот есть y = ax + b. Значение функции при аргументе х
есть d = ax + b – f (x). Неограниченное приближение к асимптоте означает, что величина d = ax + b – f (x) стремится к 0 при х ( ( (
lim [f (x) – (ax + b)] = 0.
x ( (
Если эта величина стремится к нулю, то тем более стремится к нулю величина
[pic]
Но тогда мы имеем [pic]
и так как последний предел равен нулю, то
[pic]
Зная а, можно найти и b из исходного соотношения
[pic]
Тем самым параметры асимптоты полностью определяются.
Пример
[pic]
[pic]
то есть асимптота при x ( +( имеет уравнение y=x.
11
Аналогично можно показать, что при x ( - ( асимптота имеет вид y = - x.
Сам график функции [pic] выглядит так (рис.6)
(рис.6)
12
Использованная литература
1. Р.Б. Райхмист «Графики функций», Москва, 1991г.
2. Л.Д. Кудрявцев «Курс математического анализа» т.1, Москва 1981
3. Лекции по математике
Рекомендуем скачать другие рефераты по теме: промышленность реферат, заболевания реферат.
Категории:
Предыдущая страница реферата | 1 2 3 4 | Следующая страница реферата