Атемпоральная реинтерпретация квантовомеханических представлений
| Категория реферата: Рефераты по математике
| Теги реферата: quality assurance design patterns системный анализ, культурология как наука
| Добавил(а) на сайт: Slepynin.
Предыдущая страница реферата | 1 2 3 | Следующая страница реферата
Следующими важными этапами развития дискретно – темпоральных представлений является реинтерпретация квантового фотоэффекта, корпускулярно – волнового дуализма и орбитального квантования. Классическая теория фотоэффекта описывает поглощение или генерацию фотона (кванта электромагнитного поля) с помощью простейших уравнений, имеющих тривиальный хроноквантовый аналог
p = h υ / c; υ = 2π c / λ; p = 2π h(e) h(t) / λ. (7)
Из формулы (7) следует, что энергия электромагнитной волны заданной частоты изменяется порциями hυ за время h(t), аналогично тому, как это происходит с атомарными излучателями в полости АЧТ. Таким образом, хронодискретность можно применить и для электромагнитных волн, рассматривая с новой точки зрения парадоксальный дуализм волн – частиц. В соответствии с принципом Луи де Бройля, описывающим корпускулярно-волновое строение материи можно заметить, что
t / h(t) = 2π h(e) / m v2 (8).
Из уравнения (8) можно сделать вывод, что волновая природа материи проявляется на характеристических темпоральных эквидистанциях сравнимых с величиной хронокванта. Данное умозаключение можно возвести в принцип атемпорального дуализма, считая, что форма существования материального объекта определяется уровнем его атемпоральной локализации в некотором фиктивном подпространстве атемпоральных событий.
Если распространить модель дискретных энергетических излучателей на атомарные структуры, то, следуя Н.Бору, электроны излучают фотоны только при определенных межорбитальных переходах. Период излучения при этом составляет в хроноквантовом представлении
t = h(e) h(t) / [E(i) – E(j)]; (9)
где E(i) и E(j) – орбитальные энергетические состояния. В основном состоянии с наименьшей возможной энергией атомная система может находиться стабильно долго, т.к. период излучения будет заведомо меньшим минимального периода кратного длительности хроноквантового перехода. Так можно объяснить не только дискретизацию генерируемых порций электромагнитного излучения, но и стабильность атомов. Период такого излучения будет функционально зависим от произведения энергокванта и хронокванта, а также зарядов и масс ядра и электрона.
Следующим этапом в обобщении принципов квантовой хрономеханики, может быть их распространение на уравнение для волновой пси-функции частицы, движущейся во внешнем поле. В свободном пространстве – это уравнение для волн с постоянным периодом и с решениями, соответствующими уравнению (8). Для атомарных структур во внешнем кулоновском поле ядра, период волн изменяется от точки к точке. В случае медленно изменяющихся поля и периода, последний будет определяться формулой (8) с изменяющимся импульсом p(r):
p(r) = {2m[E – U(r)]}0.5 ;(10)
где E и U(r) – полная и потенциальная энергия. Известно, что уравнение Шредингера
Δψ + 8π2 m h-2 (E – U) ψ = 0 (11)
можно получить из волнового уравнения со слагаемым p2ψ вводом импульса p(r). Решения уравнения (11) определяют смысл правил квантования, как целочисленность волн де Бройля в области движения электрона. При минимуме потенциальной энергии U~0 для линеаризованной задачи движения микрообъекта на ограниченном участке вероятностной траектории уравнение (11) переходит в
d2ψ / dq2 + const Eψ [h(e) h(t)]-2 = 0, (12)
где q-обобщенная квазилинейная координата. Из теории гармонического анализа хорошо известно, что решениями уравнений вида (12) являются логарифмические функции типа
ψ = ψ(0) sin{const q E0,5[h(e) h(t)]-1}. (13)
Учитывая граничные условия интервала движения: ψ=0 при q=q(0) получаем:
const q(0) E0, 5 [h(e) h(t)]-1 = i+1. (14)
Выражение (14) определяет условия дискретизации для нерелятивистской энергии микрообъекта в виде набора i-квантовых чисел:
E = const (i+1)2 [h(e) h(t)]-2. (15)
Таким образом, последовательное применение принципа хроноквантовой реинтерпретации основных постулатов квантовой механики приводит к своеобразной модификации тривиальных решений канонического уравнения Шредингера. Это, в свою очередь, соответствует новому принципу хроноквантования энергии, реинтерпретируемому как детерминация энергетических уровней на атемпоральной последовательности событий. Следовательно, детерминация спектральной энергии микрочастицы во временных границах выделенного хронокванта может проходить с наиболее вероятной величиной:
E(0) = const [h(e) h(t) q(0)-1]2. (16)
Следует отметить, что хотя значения нулевой энергии у квантовых микрочастиц существенно зависят от характера полей сил при нуле термодинамической температуры существует фундаментальный хроноквантовый интервал с абсолютной вероятностью локализации событий, как во временном, так и в пространственном масштабе.
В свое время Вернером Гейзенбергом был предложен иной вариант квантовой теории, в основу которого он положил принцип наблюдаемости. В данном варианте квантовомеханические величины могут быть представлены как совокупности всех возможных амплитуд перехода из одного состояния квантовой системы в другие. При этом вероятность перехода пропорциональна квадрату модуля амплитуды. Именно в таком представлении каждая величина имеет матричное выражение, определяющие начальное и конечное состояние микросистемы. В дискретной темпоралогии эти функциональные параметры сопоставимы с т.н. хрономатрицами, соответствующими совокупности темпорант из мнимого пространства признаков событий. Для иллюстрации сказанного полезно вспомнить, что теория волновых явлений интерференции и дифракции света была разработана задолго до описания природы света с помощью электромагнитных уравнений Максвелла. Изначально считалось, что источник света испускает некие волны, а интенсивность света пропорциональна квадрату параметра, определяющего волновой характер процесса. Хронодискретизация такого абстрактного волнового процесса позволяет указать его основные атемпоральные закономерности без учета, какого - либо реального физического поля. Это полностью укладывается в современную парадигму КМ, где волновая функция частицы не связана с физическими полями, а представляет собой формальную запись результирующей вероятности наблюдательного процесса. Таким образом, волновая функция (13) дает более полное из допустимых описаний произвольной микросистемы, чем стандартное состояние в КМ.
Анализируя возможности реинтерпретации композиционных квантовомеханических парадоксов, можно, прежде всего, использовать разнообразные модификации принципа дополнительности в формулировке школы Н.Бора. В классической схеме мысленного эксперимента В.Гейзенберг рассматривал неопределенность координат и импульсов совместно со временем и энергией как
Рекомендуем скачать другие рефераты по теме: экзамен, доклад по обж.
Категории:
Предыдущая страница реферата | 1 2 3 | Следующая страница реферата