Числа в пространстве
| Категория реферата: Рефераты по математике
| Теги реферата: автомобили реферат доход реферат, информационные рефераты
| Добавил(а) на сайт: Moroshkin.
Предыдущая страница реферата | 1 2 3 4
Мы только что рассмотрели квартернионное время-пространство, составляющее дополнительную пару с обычным 4-мерным псевдоевклидовым континуумом Минковского. Мы видим как безразмерная единица становится коэффициентом пропорциональности, связывающим вещественную и мнимую оси, как она расщепляется на две размерные константы, - однако математический статус такого расщепления остается совершенно непонятным. Является ли это отражением свойств Унивесума или это только особенность произвольного формального построения?
Произошла странная вещь: обычная числовая ось нами стандартно мыслится как нечто, где на одном конце ноль, а на другом - бесконечность. Где-то "возле" нуля маячит единица. Теперь вдруг единица как-то раздвинулась, освободив место для размерных величин, при этом бесконечность и нуль сомкнулись. Последнее следует пояснить.
Для фиксации движения мы можем использовать только два фундаментальных параметра - единицы времени t[с] и пространства x[м]. При этом очевидно, что их отношение имеет точное количественное выражение в любом случае: если мы соотносим x/t или t/x. Стандартное определение покоя - это 0[м/с], но одновременно и ∞[с/м], что обычно не учитывается из-за непонятности и ненужности такого количественного выражения. Однако еще Готфрид Лейбниц при создании математического анализа неоднократно размышлял над этим вопросом. Он писал: "Покой может рассматриваться как бесконечно малая скорость или как бесконечно большая медленность" (Г.В.Лейбниц. Сочинения в четырех томах. Т. 1. М.: "Мысль" с. 205. См. также т. 3, с. 199.).
У Лейбница есть еще одно примечательное рассуждение: он отождествляет нулевую скорость движения по окружности с бесконечной скоростью, когда "каждая точка окружности должна всегда находиться в одном и том же месте" (Там же: Т. 3, с. 290). То есть логически отождествляются не только 0[м/с] и ∞[с/м] (соответственно ∞[м/с] и 0[с/м]), но также 0[с/м] и ∞[с/м] при циклическом движении. То есть шкала величин, на которой лежат значения скорости вращений оказывается как бы замкнутой.
Другая особенность: когда мы строили модель относительных вращений, было сказано, что реальная частота вращения не может быть задана, измеряется только относительное число оборотов, - но тогда такая "реальная частота" может быть любой, сколь угодно большой. Не проще ли было бы сразу начать с реальной единичной частоты в один оборот?
Синхронизация вращающихся систем возникала, когда все вращающиеся радиусы ложились на одну базовую прямую. Легко понять, что мы не можем приписывать выбранной системе отсчета вращения абсолютную частоту в один оборот: тогда уменьшение скорости вращения относительно ее означает невозможность радиуса совпасть с базовой прямой. Иными словами, уменьшение частоты оборотов мы должны отсчитывать от бесконечности! Получается, что мы говорим здесь о вычитании единиц из ∞. Тогда -1 предстает перед нами не просто как "нечто влево от нуля", а как единица, которую отняли от бесконечного множества...
Впрочем, философствовать здесь можно долго, а простейший вывод из этой теоретической ситуации таков: следует признать, что числа и их алгебраические соотношения - это не просто символический язык для описания пространственных отношений, возникающий из-за введения условных мер и мысленных операций над ними, а столь же фундаментальная объективная сущность, как и само пространство - протяженный континуум. Числа существуют не потому, что мы их придумали для упорядочивания данных опыта, а потому, что мы их ОТКРЫЛИ - также, как открыли в свое время на геометрической плоскости простейшие соотношения между точками и прямыми.
В заключение своей статьи я опишу математический объект, в котором воплощается то, вокруг чего накручивается эта проблематика.
Если мы на числовой прямой будем отмечать точки, соответствующие ряду Фибоначчи, где каждое последующее является суммой двух предыдущих (1, 1, 2, 3, 5, 8, 13, 21 ...), то в пределе - при устремлении в область все больших и больших чисел - отношение "двух последних" чисел Фибоначчи, как известно, дает j. Это знаменитое иррациональное число 1,61803... , задающее "золотую пропорцию" - сечение, при котором меньший отрезок относится к большему, как больший к их сумме. Можно заявить, что двигаясь так «шагами чисел Фибоначчи» по числовой прямой мы и получаем в трансфинитной области актуально бесконечно большие "отрезки", отношение между которыми выражается иррациональным числом j.
И наоборот, можно в сторону убывания длин построить "в наших масштабах" ряд отрезков, соответствующих "золотому сечению":
Рис. 6.
Поскольку отношение большего отрезка к соседнему меньшему = 1,6... (то есть больше единицы), их общая длина в сторону убывания будет иметь на прямой вполне определенную предельную точку окончания. В ее окрестности и будут "скучиваться" уменьшающиеся отрезки, которые - в полном соответствии с бесконечной делимостью непрерывного континуума - никогда не перестанут делиться. В этом построении предельная точка никогда и не будет достигнута, однако можно утверждать, что в этой актуально бесконечно малой окрестности возле предельной точки происходит удивительная вещь: вместо непрерывного континуума образуются ЧИСЛА, которые будут идти к предельной точке как уменьшающиеся числа Фибоначчи. А поскольку ряд Фибоначчи начинается 1, 1, 2, 3... , то эти числа (и соответствующие им актуально бесконечно малые гипердействительные длины) благополучно придут в точку предела.
Очевидно, здесь предельный переход понимается несколько иначе, нежели в классическом анализе. Но главное – мы остаемся все-таки в рамках теоретических представлений, мы не измышляем абстракции, а просто расширяем границы того, что считается в математике допустимым.
Заключение
Квартернионное время-пространство не является произвольным формально-математическим построением, которое автор придумал, чтобы поговорить на отвлеченные темы. Изменение сигнатуры метрики пространства-времени (---+ вместо +++-) использует, например, упомянутый выше Дж.В.Нарликар, чтобы доказать в конформно-инвариантной теории гравитации положительный знак константы связи χ=8pG/C4 (G – гравитационная постоянная), а с точки зрения многомерного комплексного анализа речь идет всего лишь о 4-х мерных псевдоевклидовых континуумах индексов 1 и 3.
Самым существенным моментом моей работы является попытка объединения числового и пространственного аспектов 4-мерного многообразия в едином Универсуме. В статье нет математических выкладок, - сейчас важно изменение точки зрения, глядя из которой мы можем собрать потом в новую систему известные уже формальные символы. Прежде чем писать уравнения, надо представить - что мы хотим ими выразить. Трудно вообразить квартернионное время-пространство - некое вместилище, "наполненное" не геометрическими точками, а вращательными моментами. Причудливо выглядят фрактально-броуновские метания точки, которая должна двигаться по непрерывной траектории, "натыкаясь" в каждое мгновение времени на вращательный момент. Константа S, определяющая минимальный предел dt/dx, должна, при формальном объединении парных 4-мерных многообразий, каким-то образом через предельный 0-∞ переход превращаться в C. А ведь C - это скорость электромагнитных волн, значит речь идет о каком-то конкретном физическом процессе. Короче говоря, автор сейчас может только в общих чертах представлять, к каким результатам приведет развитие предлагаемого подхода...
Вводя квант действия h, Макс Планк трагически переживал, что приходится модифицировать формулы со ссылками на эксперимент. Может быть его переживания были небеспочвенны, и квантование можно вывести теоретически - исходя из логических оснований? Я полагаю, что дело обстоит именно так. Мысль Альберта Эйнштейна о том, что устройство реального мира можно понять чисто математическим путем не кажется мне чрезмерно смелой.
Скачали данный реферат: Донат, Rozanov, Utjuzhin, Akila, Старков, Ангелика.
Последние просмотренные рефераты на тему: сочинение евгений онегин, оформление титульный реферата, создание реферата, купить дипломную работу.
Категории:
Предыдущая страница реферата | 1 2 3 4