Численный расчет дифференциальных уравнений
| Категория реферата: Рефераты по математике
| Теги реферата: задачи реферата курсовые работы, реферат на тему мова
| Добавил(а) на сайт: Сонин.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата
(4) αk=f(xk+h/2, yk+f(xk,Yk)h/2)
yk=yk-1+f(xk-1,yk-1)h
(4)-рекурентные формулы метода Эйлера.
Сначала вычисляют вспомогательные значения искомой функции ук+1/2 в точках хк+1/2, затем находят значение правой части уравнения (1) в средней точке y/k+1/2=f(xk+1/2, yk+1/2) и определяют ук+1.
Для оценки погрешности в точке хк проводят вычисления ук с шагом h, затем с шагом 2h и берут 1/3 разницы этих значений:
| ук*-у(хк)|=1/3(yk*-yk),
где у(х)-точное решение дифференциального уравнения.
Таким образом, методом Эйлера можно решать уравнения любых порядков. Например, чтобы решить уравнение второго порядка y//=f(y/,y,x) c начальными условиями y/(x0)=y/0, y(x0)=y0, выполняется замена:
y/=z
z/=f(x,y,z)
Тем самым преобразуются начальные условия: y(x0)=y0, z(x0)=z0, z0=y/0.
РЕШЕНИЕ КОНТРОЛЬНОГО ПРИМЕРА
Приведем расчет дифференциального уравнения первого, второго и третьего порядка методом Эйлера
1. Пусть дано дифференциальное уравнение первого порядка:
y/=2x-y
Требуется найти решение на отрезке [0,1] c шагом h=(1-0)/5=0,2
Начальные условия: у0=1;
Пользуясь рекурентными формулами (4), находим:
1). x1=0,2; х1/2=0,1; y(x1)=y(x0)+α0h; y(x1/2)=y(x0)+f(x0,y0)h/2;
f(x0,y0)=2* 0-1=-1
y(x1/2)=1-1* 0,1=0,9
Рекомендуем скачать другие рефераты по теме: механизм реферат, реферат стиль.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 10 11 | Следующая страница реферата