Число как основное понятие математики
| Категория реферата: Рефераты по математике
| Теги реферата: готовые рефераты, 2 класс изложение
| Добавил(а) на сайт: Рунов.
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 | Следующая страница реферата
Например, в Китае в Х веке существовали следующие меры массы: 1 лан = 10 цянь = 102 фэнь = 103 ли = 104 хао = 105 сы = 106 хо.
Если вначале десятичные дроби выступали в качестве метрологических, конкретных дробей, то есть десятых, сотых и т.д. частей более крупных мер, то позже они по существу стали все более приобретать характер отвлеченных десятичных дробей. Целую часть стали отделять от дробной особым иероглифом «дянь» (точка). Однако в Китае как в древние, так и в средние века десятичные дроби не имели полной самостоятельности, оставаясь в той или иной мере связанными с метрологией.
Более полную и систематическую трактовку получают десятичные дроби в трудах среднеазиатского ученого ал-Каши в XV веке. Независимо от него, в 80-тых годах XVI века десятичные дроби были «открыты» заново в Европе нидерландским математиком Стевином.
С начала XVII века начинается интенсивное проникновение десятичных дробей в науку и практику. В Англии в качестве знака, отделяющего целую часть от дробной, была введена точка. Запятая, как и точка, в качестве разделительного знака была предложена в 1617 году математиком Непером.
Развитие промышленности и торговли, науки и техники требовали все более громоздких вычислений, которые с помощью десятичных дробей легче было выполнять. Широкое применение десятичные дроби получили в XIX веке после введения тесно связанной с ними метрической системы мер и весов. Например, в нашей стране в сельском хозяйстве и промышленности десятичные дроби и их частный вид – проценты – применяются намного чаще, чем обыкновенные дроби.
2.1.8.1. Проценты
Слово «процент» происходит от латинских слов pro centum, что буквально означает «за сотню» или «со ста». Процентами очень удобно пользоваться на практике, так они выражают части целых чисел в одних и тех же сотых долях. Это дает возможность упрощать расчеты и легко сравнивать части между собой и с целым.
Проценты были особенно распространены в Древнем Риме. Римляне называли процентами деньги, которые платил должник заимодавцу за каждую сотню. От римлян проценты перешли к другим народам Европы.
Ныне процент – это частный вид десятичных дробей, сотая доля целого (принимаемого за единицу). В некоторых вопросах иногда применяют и более мелкие, тысячные доли, так называемые промилле (от латинского pro mille – «с тысячи»), обозначаемые ‰ по аналогии со знаком процента - %. Однако на практике в большинстве случаев «тысячные» - слишком мелкие доли, десятые же доли слишком крупные. Поэтому больше всего удобны сотые доли, иначе говоря, проценты.
В нашей стране ими пользуются при составлении и учете выполнения производственных планов в промышленности и сельском хозяйстве. при разных денежных расчетах.
Таким образом, исторически первым расширением понятия о числе является присоединение к множеству натуральных чисел множества всех дробных чисел.
2.2. Отрицательные числа
Обходиться только натуральными числами неудобно. Например, ими нельзя вычесть большее из меньшего. Для такого случая были введены отрицательные числа: китайцами – в Х в. до н. э., индийцами – в VII веке, европейцами – только в XIII веке.
2.2.1. Отрицательные числа в Древней Азии
Положительные количества в китайской математике называли «чен», отрицательные – «фу»; их изображали разными цветами: «чен» - красным, «фу» - черным. Такой способ изображения использовался в Китае до середины XII столетия, пока Ли Е не предложил более удобное обозначение отрицательных чисел – цифры, которые изображали отрицательные числа, перечеркивали черточкой наискось справа налево.
В V-VI столетиях отрицательные числа появляются и очень широко распространяются в индийской математике. В Индии отрицательные числа систематически использовали в основном так, как это мы делаем сейчас.
Уже в произведении выдающегося индийского математика и астронома Брахмагупты (598 – около 660 гг.) мы читаем: « имущество и имущество есть имущество, сумма двух долгов есть долг; сумма имущества и нуля есть имущество; сумма двух нулей есть нуль… Долг, который отнимают от нуля, становится имуществом, а имущество – долгом. Если нужно отнять имущество от долга, а долг от имущества, то берут их сумму».
Отрицательными числами индийские математики пользовались при решении уравнений, причем вычитание заменяли добавлением с равнопротивоположным числом.
Вместе с отрицательными числами индийские математики ввели понятие ноль, что позволило им создать десятеричную систему исчисления. Но долгое время ноль не признавали числом, «nullus» по- латыни – никакой, отсутствие числа. И лишь через X веков, в XVII-ом столетии с введением системы координат ноль становится числом.
2.2.2. Развитие идеи отрицательного количества в Европе
В Европе к идее отрицательного количества достаточно близко подошел в начале XIII столетия Леонардо Пизанский, однако в явном виде отрицательные числа применил впервые в конце XV столетия французский математик Шюке.
Современное обозначение положительных и отрицательных чисел со знаками « + » и « - » применил немецкий математик Видман, однако еще в ХVI столетии много математиков (например, Виет) не признавали отрицательных чисел.
Натуральные числа, противоположные им (отрицательные) числа и ноль называются целыми числами. Целые и дробные числа на 2-ом уровне обобщения получили общее название - рациональные числа. Их называли также относительными, потому что любое их них можно представить отношением двух целых чисел. Каждое рациональное число можно представить как бесконечную периодическую десятичную дробь.
С помощью рациональных чисел можно осуществлять различные измерения (например, длины отрезка при выбранной единице масштаба) с любой точностью. То есть совокупность рациональных чисел достаточна для удовлетворения большинства практических потребностей.
3. Действительные числа
Рекомендуем скачать другие рефераты по теме: реферат по химии, преступление реферат.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6 7 8 9 | Следующая страница реферата