Диапазоны электромагнитных волн: Мириаметровые волны (СДВ)
| Категория реферата: Рефераты по математике
| Теги реферата: решебник 7, контрольная
| Добавил(а) на сайт: Kondrat'ev.
Предыдущая страница реферата | 1 2 3 4 5 6 7 | Следующая страница реферата
где w меньше или равна величины n.
При этом высота отражения зависит от закона изменения с высотой как Ne, так и n. Установлено, что концентрация электронов Ne распределена по высоте неравномерно : имеются области или слои, где она достигает максимума. Расчеты и эксперименты показывают, что днем отражение волн может происходить на нижней границе слоя Е (область на высоте 150 км), а ночью — на нижней границе слоя D (область на высоте 90 км). Электропроводность в этой области ионосферы для сверхдлинных волн довольно значительная (но в тысячи раз меньше, чем электропроводность сухой земной поверхности), и токи проводимости оказываются по величине того же порядка, что и токи смещения. Следовательно, нижняя область ионосферы для сверхдлинных волн обладает свойствами полупроводника.
На сверхдлинных волнах электронная плотность слоев D и Е меняется резко на протяжении длины волны. Поэтому и отражение здесь происходит, как на границе раздела воздух—полупроводник, без проникновения радиоволны в толщу ионизированного газа. Этим обусловлено слабое поглощение сверхдлинных волн в ионосфере.
Расстояние от поверхности Земли до нижней границы ионосферы составляет 60—100 км. Это расстояние имеет тот же порядок, что и длина СДВ, так что волны распространяются между двумя близко расположенными полупроводящими концентрическими сферами, одной из которых является Земля, а другой—ионосфера. Условия распространения при этом примерно такие же, как и в диэлектрическом волноводе (рис 1.2).
Как и во всяком волноводе, можно отметить оптимальные волны—волны, распространяющиеся с наименьшим затуханием, и критические волны—волны с предельной длиной волны, которые еще могут распространяться. Для волновода, образованного Землей и ионосферой, оптимальными являются волны длиной 25—35 км, а критической—волна длиной около 100 км.
В сферическом ионосферном волноводе фазовая скорость радиоволн превышает скорость света в свободном пространстве. На частотах выше 10 кГц отличие фазовой скорости от скорости света невелико, примерно (vф/c - 1) = (1¸5)×10-3. Однако фазовая скорость меняется с расстоянием, она зависит от электронной плотности и числа столкновений электронов с молекулами в той области ионосферы, где происходит отражение радиоволн. Это приводит к нестабильности фазы волны главным образом в утренние и вечерние часы, когда меняется высота отражения длинных волн, что необходимо учитывать при работе длинноволновых радионавигационных систем.
Методы расчета напряженности поля СДВ на больших расстояниях от передатчика основаны на рассмотрении картины поля ионосферного волновода. Действительно, вся электромагнитная энергия, излученная антенной, оказывается заключенной между двумя сферами и распространяется между ними по всем направлениям, поскольку в диапазоне СДВ, как правило, применяются ненаправленные антенны (см. рис.1.2 ). С удалением от антенны кольцевое сечение сферического волновода увеличивается, пока внутренний радиус кольца, в котором распространяется волна, не достигнет величины радиуса земного шара. При дальнейшем увеличении расстояния площадь кольца вновь уменьшается и энергия волны концентрируется. Характер изменения напряженности электрического поля длинных волн с расстоянием при большом удалении от передатчика изображен на рис. 1.3 сплошной линией. Пунктирная кривая показывает характер изменения напряженности электрического поля в сферическом волноводе с идеально проводящими стенками.
Рис.1.2. Распространение сверхдлинных волн в волноводе Земля — ионосфера |
Рис. 1.3. Зависимость напряженности электрического поля СДВ от расстояния: 1 — без учета поглощения; 2 — с учетом поглощения
|
Расчет напряженности электрического поля сверхдлинных волн обычно ведут по эмпирическим формулам, чаще всего по формуле Остина. По формуле Остина можно рассчитать напряженности электрического поля длинных волн в дневное время для расстояний до 16000—18000 км над морем и сушей, причем в последнем случае начиная с расстояний 2000—3000 км.
Формула Остина имеет следующий вид:
Em = ××e - ×r (км) , где угол q обозначен на рис. 1.2
Наличие в знаменателе этой формулы величины отражает зависимость напряженности электрического поля от расстояния, изображенную на рис.1.3 пунктирной кривой. Как видно из рис.1.3, на расстояниях от передатчика, соответствующих антиподным (диаметрально противоположным) точкам земного шара, наблюдается существенное увеличение напряженности поля. Это явление называется эффектом антипода.
Основное преимущество сверхдлинных волн — большая устойчивость напряженности электрического поля: сила сигнала на линии связи мало меняется в течение суток и в течение года и не подвержена случайным изменениям. Достаточную для приема напряженность электрического поля можно обеспечить на расстоянии более 20 000 км, но для этого требуются мощные передатчики и громоздкие антенны.
Недостатком СДВ является невозможность передачи широкой полосы частот, необходимой для трансляции разговорной речи или музыки. В настоящее время сверхдлинные радиоволны применяются главным образом для телеграфной связи на дальние расстояния, а также для навигации.
Условия распространения сверхдлинных радиоволн исследуют, наблюдая за грозами. Грозовой разряд представляет собой импульс тока, содержащий колебания различных частот—от сотен герц до десятков мегагерц. Основная часть энергии импульса грозового разряда приходится на диапазон колебаний, соответствующий сверхдлинным волнам. Колебания от места возникновения распространяются во все стороны, причем волны различной длины при распространении испытывают различное поглощение и приходят в разной фазе. В результате импульс, пришедший на значительное расстояние от места разряда, искажается. По искажению импульса изучают свойства сферического волновода Земля — ионосфера.
В диапазоне длинных волн наблюдается своеобразная помеха — “свистящий атмосферик”. Он воспринимается на слух как сигнал, частота которого меняется во времени за (0,5—1 с примерно от 400 до 8000 Гц). Источником “свистящего атмосферика” является грозовой разряд, возбуждающий сверхдлинные волны. При распространении волны в ионизированном газе в направлении силовых линий постоянного магнитного поля при f < fH = 1.4 МГц не происходит отражения волны от ионосферы, поскольку диэлектрическая проницаемость ионосферы всегда больше единицы. Волна распространяется вдоль силовых линий магнитного поля Земли, пронизывает всю толщу ионосферы и может быть принята на Земле на другом конце силовой линии магнитного поля, как схематически показано на рис.1.4.
Рис. 1.4. Схема распространения “свистящих атмосфсриков”:
1 — грозовой разряд; 2 — силовые линии магнитного поля Земли;
3—путь короткого “свистящего атмосферика”;
Рекомендуем скачать другие рефераты по теме: продажа рефератов, конспект речь.
Категории:
Предыдущая страница реферата | 1 2 3 4 5 6 7 | Следующая страница реферата